

Linear Systems

2022 DATA BOOK

Quality Through Innovation Since 1987

Table of Contents:

Testimonials	4
Introduction	5
Ordering Information and Sampling Policy	5
Quality and Reliability	6
Discrete Component Product Line Begins	7
N-Channel Dual JFETs	
Ultra Low Noise (<u>LSK389A/B/C/D</u>)	8-15
Low Noise, Input Capacitance and Distortion (<u>LSK489</u>)	16-22
Low Noise (LS840/41/42 and LS843/44/45)	
High Frequency (<u>LS5911/12/12C</u> and <u>U/SST440/41</u>)	
Low Leakage and High Impedance (LS830/31/32/33)	
Low Leakage and High Impedance (LS5905/06/07/08/09 and U421/2/3/4/5/6)	
General Purpose (<u>SST/U401/2/3/4/5/6</u> , <u>LS3954A/54/55/56/58</u> and <u>LSK589</u>)	
N-Channel Single JFETs	
Ultra Low Noise (<u>LSK170A/B/C/D</u> and <u>LSK189</u>)	50-61
Low Noise (J/SST201/2/4 and LS846)	
Low Noise, High IDSS (LSK170X-1)	
High Frequency (<u>2N/PN/SST4416/16A</u> and <u>J/SST210/11/12</u>)	
High Frequency (<u>U/J/SST308/09/10</u>)	
Low Leakage and High Impedance(LS/PF/SST5301)	
Low Leakage and High Impedance (2N/PN/SST4117/18/19)	
High Gain (<u>LSBF510</u>)	
General Purpose (<u>LS190</u>)	
P-Channel Dual JFET	
Low Noise (<u>LSJ689</u>)	
P-Channel Single JFETs	
Low Noise (<u>LSJ/SST74A/74B/74C/74D</u>)	
General Purpose (<u>LS/SST94</u>)	
N-Channel Single JFET Switches	
General Purpose (<u>2N/PN/SST4391/92/93</u>)	
General Purpose DFN Package (<u>4391/92/93 DFN</u>)	
General Purpose (<u>J/SST11/12/13</u>)	
P-Channel Single JFET Switches	
General Purpose (<u>2N5018/2N5019</u> and <u>2N5114/5115/5116</u>)	
General Purpose (<u>J/SST174/175/176/177</u>)	
Low Leakage Single Diodes	
Pico Ampere (JPAD5/10/20/50/100/200/500, PAD1/2/5/10/20/50/100, SSTPAD5/10/20/50	113-114
Pico Ampere DFN Package (PAD5/50 DFN)	
Low Leakage Dual Diodes	
Pico Ampere (DPAD1/2/5/1020/50/100, SSTDPAD5/10) and ID100/101	117-120
N-Channel Lateral Single DMOS FET Switches	
High Speed (<u>SD/SST210/214</u>)	121-123
High Speed Zener Protected (SD/SST211/213/215)	
N-Channel Lateral Quad DMOS FET Switches	
High Speed Zener Protected (<u>SD5000/5001/5400/5401</u>)	127-129
Current Regulating Diodes	
Low Impedance (<u>J/SST500/01/02/03/04/05/06/07/08/09/10/11</u>)	130-131
Bipolar Dual NPN Transistors	
General Purpose (<u>IT120/121/122</u>)	
Low Noise (<u>LS3250A/B/C</u>)	
(<u></u> ,,, _,, _	

Table of Contents Continued:

General Purpose (<u>LS310/311/312/313</u>)	
Bipolar Dual Super Beta NPN Transistors	
General Purpose (<u>LS301/302/303</u>)	145-146
Bipolar Log Conformance Dual NPN Transistor	
General Purpose (<u>LS318</u>)	
Bipolar Dual PNP Transistors	
General Purpose (IT130A/130/131/132, LS350/351/352)	149-152
Low Noise (LS3550A/B/C)	153-154
Bipolar Single PNP Transistors	
General Purpose (<u>LS3550SA/SB/SC</u>)	153-154
Bipolar Log Conformance Dual PNP Transistor	
General Purpose (<u>LS358</u>)	155-156
N-Channel Enhancement Mode Single MOSFETs	
General Purpose (<u>3N170/171</u> and <u>2N4351</u>)	157-160
P-Channel Enhancement Mode Single MOSFETs	
General Purpose (<u>3N163/164</u>)	
P-Channel Enhancement Mode Dual MOSFETs	
General Purpose (<u>3N165/166</u> and <u>3N190/191</u>)	
Single BIFET Amplifier	
High Input Impedance (<u>LS320</u>)	169-170
Light Sensitive JFET Photo FET	
High Sensitivity (<u>LS627</u>)	171-172
N-Channel JFET VCR (Voltage Controlled Resistor)	
Rds(on)=100 to 200 Ω and Rds(on)=14 to 38 Ω (VCR11N and LS26VNS)	
P-Channel JFET VCR (Voltage Controlled Resistor)	
Rds(on)=20 to 50Ω (<u>LS26VPS</u>)	178-180
Package Options	181

Linear Systems' 2022 Data Book

Testimonials

"One of the main reasons we offer a lifetime warranty for our products is because we can count on Linear Systems. The Linear Systems' LSK389B J-FET is so reliable that in the rare event a faulty unit is discovered, it's the very last variable we check. The LSK389B J-FET simply doesn't fail!"

Rodger Cloud www.cloudmicrophones.com

"I believe that selecting Linear Systems' LSJ74 for our Halo Integrated Amplifier has contributed to the unprecedented number or rave reviews and awards it's received. Parasound's product development team commends Linear Systems for providing customer support that is top-notch."

Richard Schram

www.parasound.com

"Our QCL instrument has the lowest noise commercially available and is used for pharmaceutical process quality control and trace gas emissions monitoring. Noise testing the instrument is critical to ensuring performance. Our test equipment uses the Linear Systems' LSK389 JFET. The precision of the LSK389 makes verifying the precision of our instruments possible."

Lisa Mueller

www.teamwavelength.com

Introduction

Welcome to the 2022 edition of the Linear Systems Data Book. Here we present all our devices in one single document to give you a complete overview of our portfolio. We hope that makes it even easier for you to find the right product for your design. Our extensive portfolio offers high-quality discrete components serving a wide range of markets including automated test equipment, professional audio, medical electronics, military and test & measurement. Our products are housed in some of the most advanced, industry-leading small packages, as well as robust industry standard packages giving designers many options. Alongside quality and efficiency, Linear Systems' customers value reliability and a constant supply they can trust. We produce consistently reliable discrete components and we work at every step to safeguard the long-term availability of our manufacturing processes and products, to ensure secure supply for all our customers. In addition, Linear Systems has an on-site testing facility to conduct a full range of production and post-production testing. Specialized capabilities include: Hi-temperature product testing and the highest capacity sub-nanovolt noise production testing capability in the world. We have a long history in the business and broad range of experience. Linear Systems ensures dedicated in-house technical support—from simplifying selection via quick-reference material to in-person technical meetings with our engineering team. All to help you choose the best devices for the most efficient design.

This Data Book provides all Linear Systems' datasheets in one spot. The Table of Contents includes product category, part number and part description, so you can browse the entire product line with ease. There is also a dedicated section on packages, highlighting the latest package innovations and packing options.

Linear Systems has been manufacturing high-quality discrete components for over 30 years. We offer improved and direct replacements for over 2,000 current and discontinued small signal discretes from Fairchild, Vishay-Siliconix, Analog Devices, Interfet, Intersil, Motorola, ON Semiconductor, Toshiba, NXP and National Semiconductor. Whether you have a new or existing design, Linear Systems can provide the discrete component(s) to best fit your application.

Ordering Information and Sampling Policy

Linear Systems does not impose minimum order requirements when ordering directly from the factory. We understand customers may only need a few parts for prototyping, repairs, student projects or DIY designs. Our parts are available to all. We do, however, offer incremental price breaks for increased purchase quantity. Linear Systems also supports customers who require very large quantities for mass production. In this case special high-quantity pricing may be negotiated for bulk purchases of 100,000 plus pieces.

Do you use the LTspice[®] electronic circuit simulator? The majority of Linear Systems' parts are included in the latest edition of the LTspice[®] embedded library. Customers often try our products through the <u>LTspice-simulator</u> before ordering.

Would you like to receive samples? Samples including detailed data logs are available upon request.

Interested in a part not listed on our website, or do you need a custom part? Linear Systems offers many non-standard electrical screening and package options.

Linear Systems' friendly staff are here to help. For any kind of assistance you can reach us by calling (510) 490-9160 or email us at support@linearsystems.com.

Our Commitment: Quality and Reliability

Quality is Everything

Linear Systems is ISO 9001:2015 certified. All our processes and manufacturing facilities are subject to regular internal audits.


Continuously Improve

Linear Systems' Continuous Improvement Program (CIP) ensures that existing processes are strategically reviewed while each new development builds on past learning. The result is that best practices are always employed.



Zero defect is our goal. To ensure continuous improvement, failure analysis and the determination to find root causes is performed at all stages of development and production by adoption of quality-analysis tools and methods.

DISCRETE COMPONENT PRODUCT LINE

LSK389 A/B/C/D

8 G2

7 SS

6 D2

SOIC 8L

Top View

S2

Over 30 Years of Quality Through Innovation

Ultra-Low Noise Monolithic Dual N-Channel JFET Amplifier

S2

D2105

G2

∕∩₄

INDUSTRY'S FIRST 100% TESTED LOWEST NOISE JFET

Absolute Maximum Ratings							
@ 25 °C (unless otherwise stated)							
Maximum Temperatures							
Storage Temperature	-65 to +150°C						
Junction Operating Temperature	-55 to +150°C						
Maximum Power Dissipation							
Continuous Power Dissipation @ +25°C	400mW						
Maximum Currents							
Gate Forward Current	I _{G(F)} = 10mA						
Maximum Voltages							
Gate to Source	$V_{GSS} = 40V$						
Gate to Drain	$V_{GDS} = 40V$						

Features

- Ultra-Low Noise: $e_n = 1.3 nV/\sqrt{Hz}$ (typ), f = 1.0 kHz and NBW = 1.0 Hz
- Ultra-Low Noise: $1.5 \text{nV}/\sqrt{\text{Hz}}$ (typ), f = 10Hz and NBW = 1.0Hz
- Tight Matching: $IV_{GS1-2}I = 15mV max$
- High Breakdown Voltage: BV_{GSS} = 40V max
- High Gain: $G_{fs} = 20mS$ (typ)
- Low Capacitance: 25pF (typ)
- Improved Second Source Replacement for 2SK389

Benefits

- Improved System Noise Performance
- Unique Monolithic Dual Design Construction of Interleaving Both JFETs on the Same Piece of Silicon
- **Excellent Matching and Thermal** Tracking
- Great for Maximizing Battery Operated Applications by Providing a Wide Output Swing
- A High Signal to Noise Ratio as a Result of the LSK389's Low and **Tightly Matched Gate Threshold** Voltages

Applications

G1

20 D1

′S1

30

TO-71 6L

Top View

Audio Amplifiers and Preamps

S1

D1 2

SS 3

G1 4

- **Discrete Low-Noise Operational** Amplifiers
- **Battery-Operated Audio Preamps**
- Audio Mixer Consoles
- Acoustic Sensors
- Sonic Imaging
- Instrumentation Amplifiers
- Microphones
- Sonobouys
- Hydrophones
- **Chemical and Radiation Detectors**

Description

Channel JFET, 100% tested, guaranteed to meet 1/f and broadband noise specifications, while eliminating burst (RTN or popcorn) noise entirely. The LSK389 Series, Monolithic Dual N-Channel JFETs were specifically designed to provide users a better performing, less time consuming and cheaper solution for obtaining tighter IDSS matching, and better thermal tracking, than matching individual JFETs. The LSK389's features incorporate four grades of IDSS: 2.6-6.5mA, 6.0-12.0mA, 10.0percent, a gate threshold offset of 15mV, a voltage noise (en) of $1.3 \text{nV}/\sqrt{\text{Hz}}$ typical at f = 1.0kHZ, with a Gain LSK389 provides a wide output swing, and a high signal version, please refer to the LSK170 datasheet.

The LSK389 is the industry's lowest noise Dual N- to noise ratio as a result of the LSK389's tightly matched and low gate threshold voltages. The 40V breakdown provides maximum linear headroom in high transient program content amplifiers.

Additionally, the LSK389 provides a low input noise to capacitance product that has nearly zero popcorn noise. The narrow ranges of the IDSS electrical grades combined with the superior matching performance of the LSK389's monolithic dual construction promote ease of device tolerance in low voltage applications, as compared 20.0mA and 17-30mA, with an IDSS match of 10 to matching single JFETs. Available in surface mount SOIC 8L and thru-hole TO-71 6L packages.

Contact the factory for tighter noise and other of 20mS typical, and 25pF of capacitance typical. The specification selections. For equivalent single N-Channel

SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Vo	ltage	-40		1	V	$V_{DS} = 0, I_D = -100 \mu A$
V _{GS(OFF)}	Gate to Source Pinch-off Volta	ge	-0.3		-1.6	V	$V_{DS} = 10V, I_D = 0.1 \mu A$
		LSK389A	2.6		6.5		
	Drain to Source Saturation	LSK389B	6		12		$V_{DS} = 10V. V_{CS} = 0$
IDSS	Current	LSK389C	10		20	mA	$v_{\rm DS} = 10v, v_{\rm GS} = 0$
		LSK389D	17		30		
I _{GSS}	Gate to Source Leakage Current			-100	-300	pА	$V_{GS} = -25V, V_{DS} = 0$
I_{G1G2}	Gate to Gate Isolation Current			±1.0	±50	nA	$V_{G1^-G2} = \pm 45V, I_D = I_S = 0A$
G _{fs}	Full Conduction Transconducta	ance	8	20	1	mS	$V_{DS} = 10V, V_{GS} = 0, f = 1kHz$
e _n	Noise Voltage			1.3	1.9	nV/√Hz	V_{DS} = 10V, I_D = 2mA, f = 1kHz, NBW = 1Hz
en	Noise Voltage			1.5	4.0	nV/√Hz	V_{DS} = 10V, I_D = 2mA, f = 10Hz, NBW = 1Hz
C _{ISS}	Common Source Input Capacitance			25		pF	V _{DS} = 10V, V _{GS} = 0, <i>f</i> = 1MHz,
C _{RSS}	Common Source Reverse Transfer Cap.			5.5		pF	$V_{DG} = 10V, I_{D} = 0, f = 1MHz,$

Electrical Characteristics @ 25°C (unless otherwise stated)

Matching Characteristics @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
VGS1-VGS2	Differential Gate to Source Cutoff Voltage		6.0	15	mV	V _{DS} = 10V, I _D = 1mA
	Saturation Drain Current Ratio	0.9	1.0	1.1	n/a	V _{DS} = 10V, V _{GS} = 0V

Notes

1. Absolute maximum ratings are limiting values above which serviceability may be impaired.

2. Pulse Test: PW \leq 300µs, Duty Cycle \leq 3%

3. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Typical Characteristics

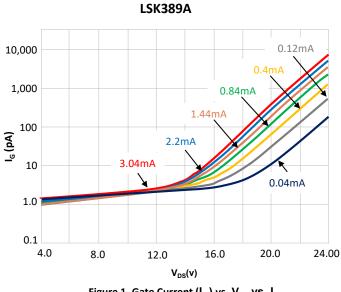
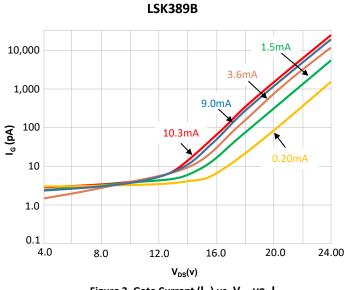
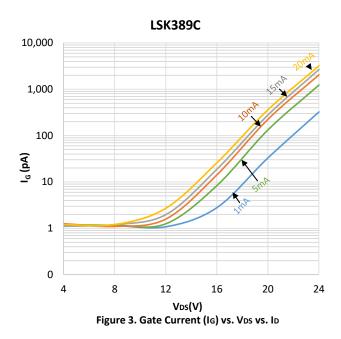
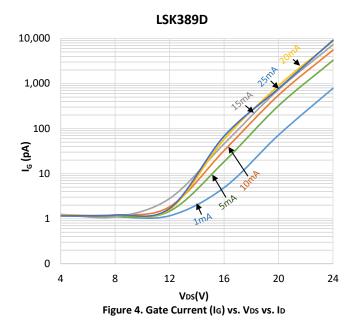
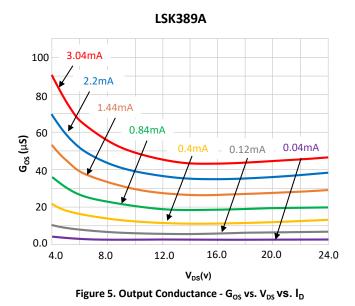
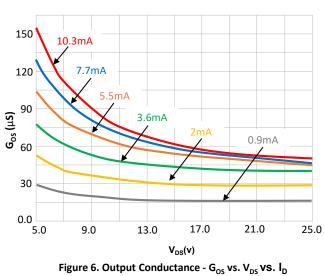
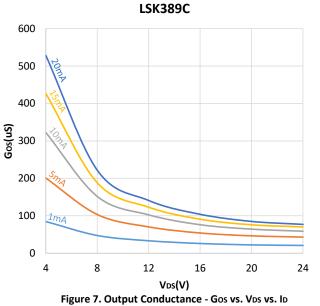
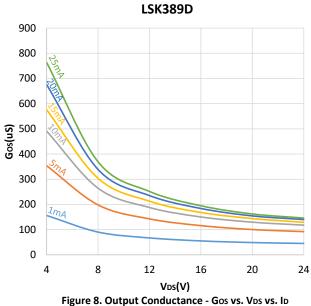


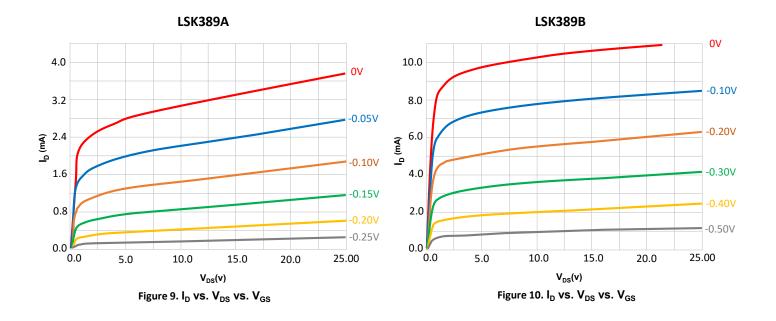
Figure 1. Gate Current (I_G) vs. V_{DS} vs. I_D

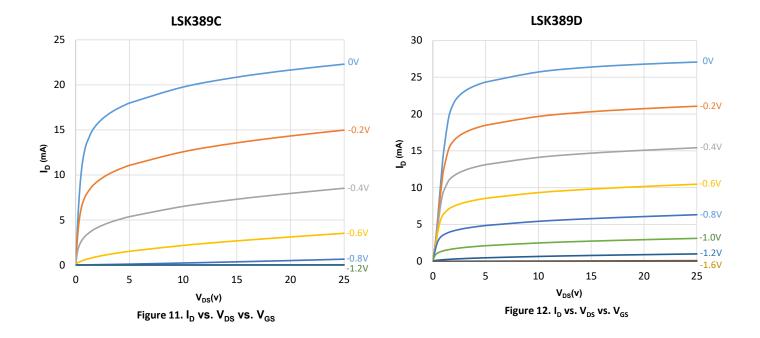





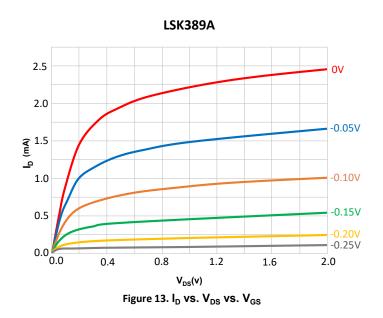

Figure 2. Gate Current (I_G) vs. V_{DS} vs. I_D

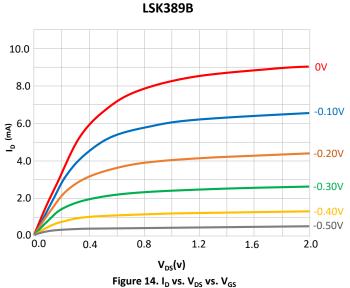


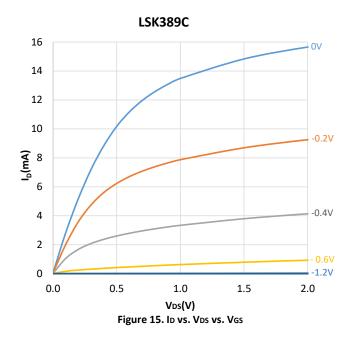

Typical Characteristics Continued

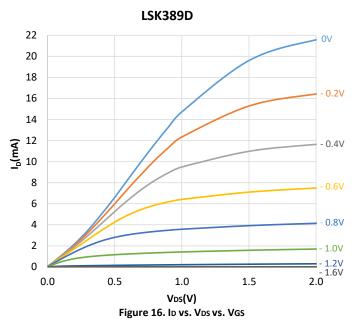


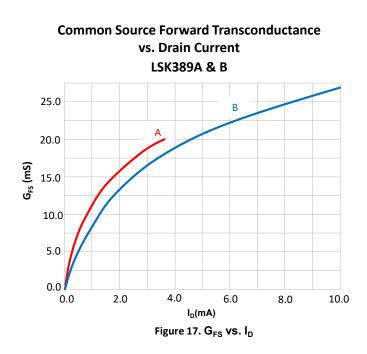



LSK389B

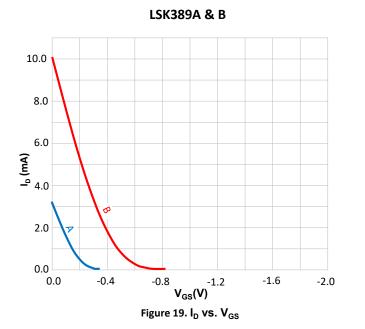


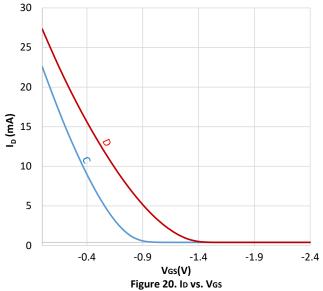


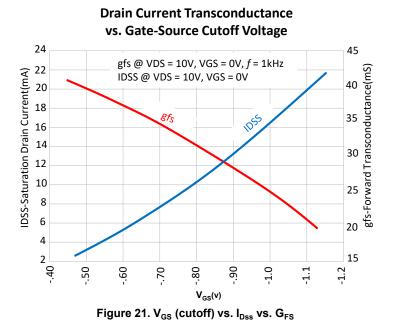


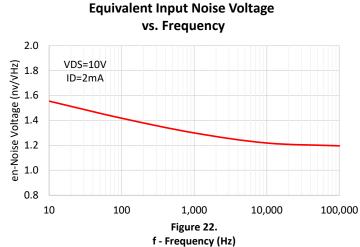




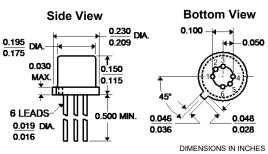


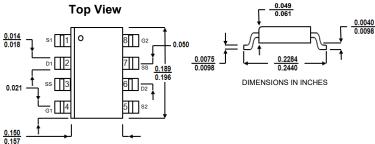




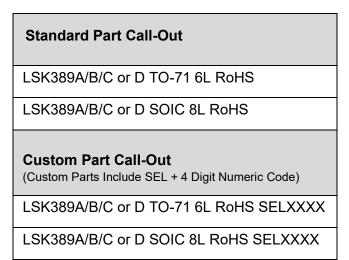


LSK389C & D


Typical Characteristics


Package Dimensions

TO-71 6 Lead



Ordering Information

SS: SUBSTRATE, LEAVE THESE PINS FLOATING (N/C)

LINEAR SYSTEMS

Over 30 Years of Quality Through Innovation

Low Noise, Monolithic Dual N-Channel JFET Amplifier

INDUSTRY'S LOWEST INPUT CAPACITANCE MONOLITHIC DUAL N-CHANNEL JFET

Absolute Maximum Ratings							
@ 25 °C (unless otherwise stated)							
Maximum Temperatures							
Storage Temperature	-55 to +150°C						
Junction Operating Temperature	-55 to +150°C						
Maximum Power Dissipation, TA = 25°C							
Continuous Power Dissipation, per side ⁴	300mW						
Power Dissipation, total ^₅	500mW						
Maximum Currents							
Gate Forward Current	I _{G(F)} = 10mA						
Maximum Voltages							
Gate to Source	V _{GSS} = 60V						
Gate to Drain	V _{GDS} = 60V						
Features	Features						
Ultra Low Noise	$e_n = 1.8 nV/\sqrt{Hz}$						
Low Input Capacitance	Ciss = 4pF						

S2 G1 0530 **S1** G2 G1 [[1 6 S2 SS D1 2 7 D1 D2 20 06 D1 2 5 D2 6 D2 SS 3 S1 [] 4 G2 G1 4 5 S2 SOIC-A SOT-23 TO-71 **Top View Top View Top View** * For equivalent single version, see LSK189

Features

- Low Noise: e_n = 2nV/√Hz (typ), f = 1kHz, NBW = 1Hz
- Very Low Common Source Input Capacitance of $C_{ISS} = 4pF typ$ and 8pF- max
- High Slew Rate
- Low Offset/Drift Voltage
- Low Gate Leakage IGSS and IG
- High CMRR 102 dB

Benefits

- Tight Differential Voltage Match vs. Current
- Improved Op Amp Speed Settling Time Accuracy
- Minimum Input Error Trimming Error Voltage
- Lower Intermodulation Distortion

Applications

- Wideband Differential Amplifiers
- High Speed Temperature Compensated Single Ended Input Amplifier Amps

LSK489

- High Speed Comparators
- Impedance Converters
- Sonobouys and Hydrophones
- Acoustic Sensors

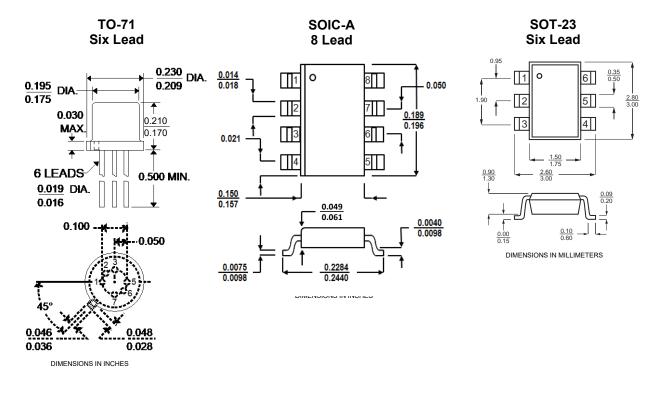
Description

The LSK489 is the industry's lowest input capacitance and lownoise monolithic dual N-Channel JFET. Low input capacitance substantially reduces intermodulation distortion. In addition, these dual JFETs feature tight offset voltage and low drift over temperature range, and are targeted for use in a wide range of precision instrumentation and sensor applications. The LSK489 is available in surface mount plastic SOIC 8L and SOT-23 6L, as well as thru-hole metal TO-71 6L packages. For an equivalent single N-Channel version refer to the LSK189 datasheet. LSK489 TO-71 6L and SOIC 8L are fit, form and pin compatible to the same LSK389 product.

The LSK489 provides a dramatic increase in capabilities for a wide range of low-noise applications.

The most significant aspect of the LSK489 is how it combines a noise level nearly as low as the LSK389 while having much lower gate-to-drain capacitance, 4pF versus the 25pF. The slightly higher noise of the LSK489, versus the LSK389, is not significant in most instances, while the much lower capacitance enables designers to produce simpler, more elegant circuit designs with fewer devices that cost less in production.

Like the Linear Systems LSK389, the LSK489 features a unique design construction of interleaving both JFETs on the same piece of silicon to provide excellent matching and thermal tracking, as well a low-noise profile having nearly zero popcorn noise.

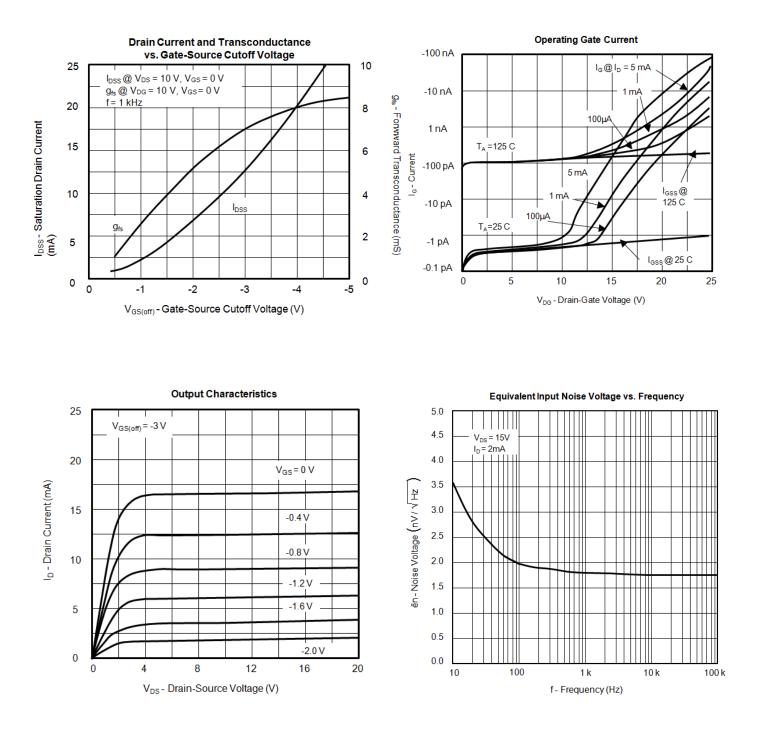

Symbol	Characteristic	Min.	Тур.	Мах	Units	Conditions	
VGS1-VGS2	Differential Gate to Source Cutoff Voltage			20	mV	V _{DS} = 10V, I _D = 1mA	
IDSS1 IDSS2	Gate to Source Saturation Current Ratio	0.9		1.0		V _{DS} = 10V, V _{GS} = 0V	
CMRR	<u>Common Mode Rejection Ratio</u> -20 log ΔV _{GS1-2} /ΔV _{DS}	95	102		dB	V_{DS} = 10V to 20V, I_D = 200 μ A	
en	Noise Voltage		2.0		nV/√Hz	V _{DS} = 15V, I _D = 2.0mA, <i>f</i> = 1kHz, NBW = 1Hz	
en	Noise Voltage		3.5		nV/√Hz	V _{DS} = 15V, I _D = 2.0mA, <i>f</i> = 10Hz, NBW = 1Hz	
Ciss	Common Source Input Capacitance		4	8	pF		
Crss	Common Source Reverse Transfer Capacitance			3	pF	V _{DS} = 15V, I _D = 500μA, <i>f</i> = 1MHz	

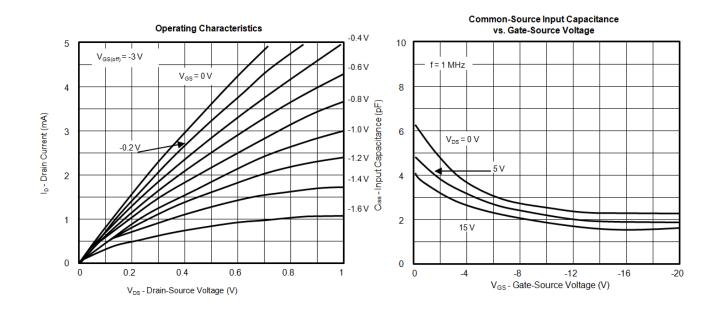
Matching Characteristics @ 25°C (unless otherwise stated)

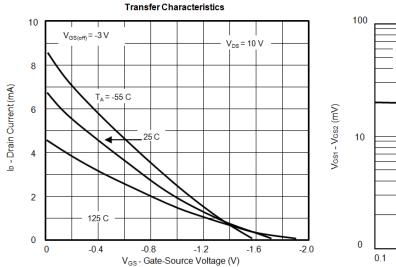
Electrical Characteristics @ 25°C (unless otherwise stated)

Symbol	Characteristic	Min.	Тур.	Мах	Units	Conditions
BV _{GSS}	Gate to Source Breakdown Voltage	-60			V	$V_{DS} = 0, I_{D} = -1nA$
V(BR)G1 - G2	Gate to Gate Breakdown Voltage	±30	±45		V	I _G = ±1µA, I _D =I _S =0 A (Open Circuit)
$V_{GS(OFF)}$	Gate to Source Pinch-off Voltage	-1.5		-3.5	V	V _{DS} = 15V, I _D = 1nA
V _{GS}	Gate to Source Operating Voltage	-0.5		-3.5	V	V _{DS} = 15V, I _D = 500µA
IDSS ²	Drain to Source Saturation Current	2.5	5	15	mA	V _{DG} = 15V, V _{GS} = 0
lg	Coto Operating Current		-2	-25	pА	$V_{DG} = 15V, I_{D} = 200\mu A$
IG	Gate Operating Current		-0.8	-10	nA	T _A = 125°C
I _{GSS}	Gate to Source Leakage Current			-100	pА	V_{DG} = -15V, V_{DS} = 0
G _{fs}	Full Conductance Transconductance	1500			μS	V _{DG} = 15V, V _{GS} = 0, <i>f</i> = 1kHz
G _{fs}	Transconductance	1000	1500		μS	V_{DG} = 15V, I_{D} = 500µA
Gos	Full Output Conductance			40	μS	V _{DG} = 15V, V _{GS} = 0
Gos	Output Conductance		1.8	2.7	μS	V _{DG} = 15V, I _D = 200µA
NF	Noise Figure			0.5	dB	$V_{DS} = 15V, V_{GS} = 0, R_G = 10M\Omega, f = 100Hz, NBW = 6Hz$

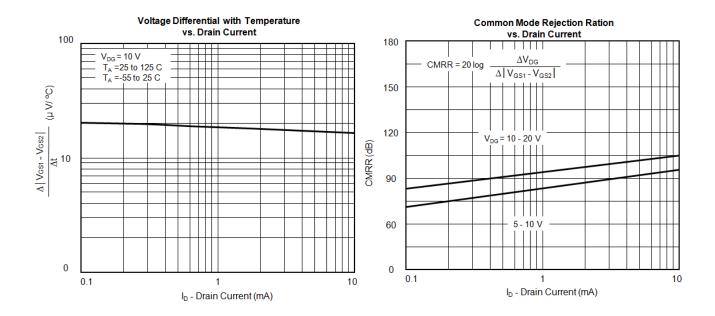
Package Dimensions

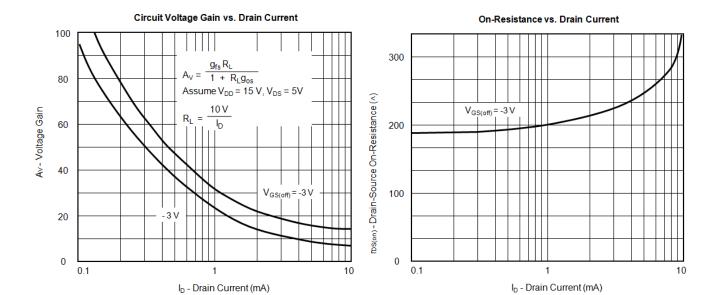


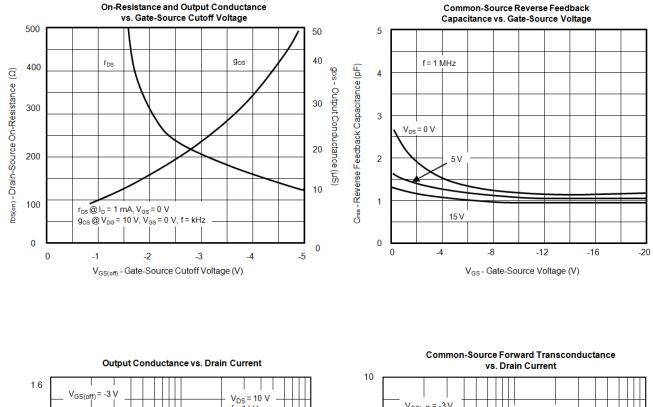

Notes:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse width $\leq 2_{ms}$.
- 3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate electrical polarity only.
- 4. Derate 2.4 mW/°C above 25°C.
- 5. Derate 4 mW/°C above 25°C.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.


Typical Characteristics





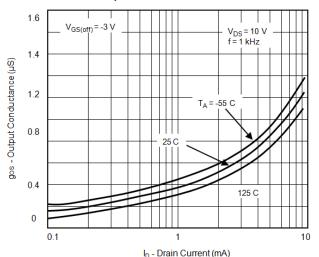
100 $V_{DG} = 10 V$ $T_A = 25 C$ 0 0 0.1 10 $I_D - Drain Current (mA)$

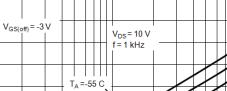
8

6

4

2


0


0.1

25 C

gfs - Forward Transconductance (mS)

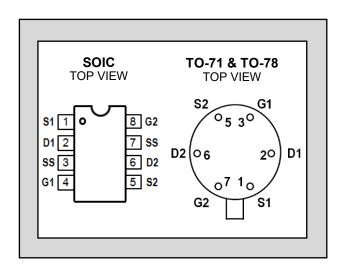
Typical Characteristics Continued

1

I_D - Drain Current (mA)

125 C

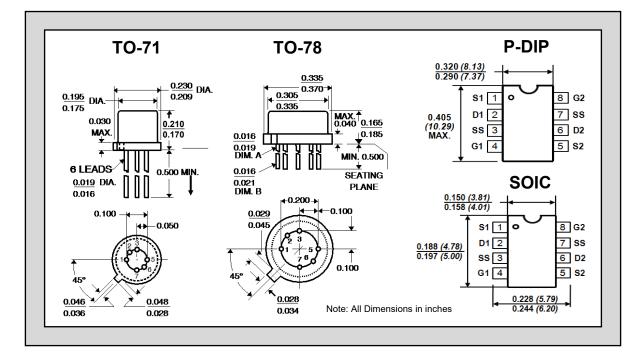
10


LINEAR SYSTEMS

Over Three Decades of Quality Through Innovation

FEATU	FEATURES							
LOW N	OISE	en=8n\	//Hz TYP.					
LOW L	EAKAGE	I _G =10p	DA TYP.					
LOW D	RIFT	I V _{GS1-2}	₂/TI=5µV/⁰C max.					
LOW C	FFSET VOLTAGE	IV _{GS1-2}	I=2mV TYP.					
ABSOL	UTE MAXIMUM RATING	S ¹						
@ 25°C	C (unless otherwise noted)							
Maxim	um Temperatures							
Storag	e Temperature		-55°C to +150°C					
Operat	ing Junction Temperature		-55°C to +150°C					
Maxim	um Voltage and Current	for Eac	h Transistor ¹					
-V _{GSS}	Gate Voltage to Drain or	Source	60V					
I _{G(f)}	Gate Forward Current		10mA					
Maxim	Maximum Power Dissipation							
Device	Device Dissipation ² @ Free Air - Total 400mW T _A =+25°C							

LS840 LS841 LS842


LOW NOISE LOW DRIFT LOW CAPACITANCE MONOLITHIC DUAL N-CHANNEL JFET AMPLIFIER

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

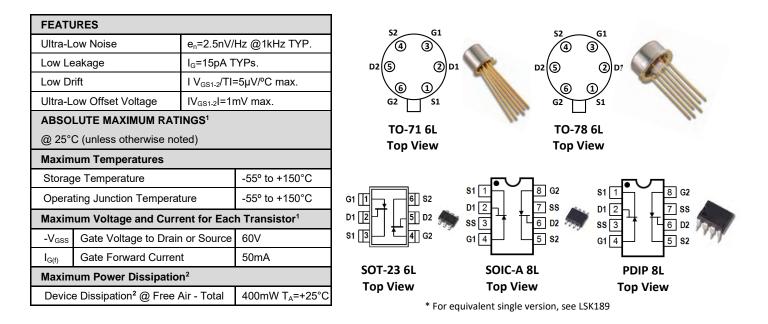
ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)										
SYMBOL	CHARACTERISTIC	LS840	LS841	LS842	UNITS	CONDITIONS				
I V _{GS1-2} / TI max.	Drift vs. Temperature	5	10	40	µV/⁰C	V _{DG} = 20V I _D = 200µA				
						T _A = -55°C to +125°C				
IV _{GS1-2} I max.	Offset Voltage	5	10	25	mA	V _{DG} = 20V I _D = 200µA				
SYMBOL	CHARACTERISTIC ³	MIN.	TYP.	MAX.	UNITS	CONDITIONS				
			ITP.							
BV _{GSS}	Breakdown Voltage	-60			V	V _{DS} = 0 I _D = -1nA				
BVggo	Gate-to-Gate Breakdown	±60			V	$I_{GGO}=\pm 1\mu A$ $I_{D}=0$ $I_{S}=0$				
	TRANSCONDUCTANCE									
G _{fss}	Full Conduction	1000		4000	μS	V_{DG} = 20V V _{GS} = 0 f = 1kHz				
G _{fs}	Typical Conduction	500		1000	μS	V _{DG} = 20V I _D = 200µA				
G _{fs1} G _{fs2}	Transconductance Ratio	0.97		1.0		V _{DG} = 20V I _D = 200µA; Note 4				
	DRAIN CURRENT									
IDSS	Full Conduction	0.5	2	5	mA	V_{DG} = 20V V _{GS} = 0				
IDSS1 IDSS2	Drain Current Ratio	0.95		1.0						
	GATE-SOURCE									
V _{GS} (off)	Pinchoff Voltage	-1	-2	-4.5	V	V _{DS} = 20V I _D = 1nA				
V _{GS}	Operating Range	-0.5		-4	V	V _{DS} = 20V I _D = 200µA				
	GATE CURRENT									
-l _G	Operating		10	50	pА	V _{DG} = 20V I _D =200µA				
-l _G	High Temperature			50	nA	V _{DG} = 20V I _D =200µA T _A =+125°C				
-l _G	Reduced VDG		5		pА	V _{DG} = 10V I _D =200µA				
-I _{GSS}	At Full Conduction			100	pА	V _{DG} = 20V V _{DS} =0				

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS		
	OUTPUT CONDUCTANCE							
Goss	Full Conduction			10	μS	V _{DG} = 20V	V _{GS} = 0	
G _{OS}	Operating		0.1	1	μS	V _{DG} = 20V	I _D = 200μΑ	
Gos 1-2	Differential		0.01	0.1	μS			
	COMMON MODE REJECTION							
CMRR	20 log V _{GS1-2} / V _{DS}		100		dB	V _{DS} = 10 to 20\	/	I _D =200µA
CMRR	-20 109 V GS1-2/ V DS		75		dB	V _{DS} = 5 to 10V		I⊳=200µA
	NOISE							
NF	Figure			0.5	dB	V _{DS} = 20V	V _{GS} = 0	R _G =10M
						f= 100Hz	NBW= 6Hz	
en	Voltage			10	nV/Hz	V _{DS} = 20V	I⊳= 200µA	f= 1KHz
						NBW= 1Hz		
en	Voltage			15	nV/Hz	V _{DS} = 20V	I _D = 200μA	f= 10Hz
						NBW= 1Hz		
	CAPACITANCE							
CISS	Input		4	10	pF	V _{DS} = 20V	I _D =200μΑ	
Crss	Reverse Transfer		1.2	5	pF			
C _{DD}	Drain-to-Drain		0.1		pF	V _{DG} = 20V	I _D = 200μΑ	

NOTES:

- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired
- 2. Derate 4mW/°C above 25°C
- 3. All MIN/TYP/MAX limits are absolute numbers. Negative signs indicate electrical polarity only.
- 4. Assumes smaller number in the numerator.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.


LINEAR SYSTEMS

LS843 Series

Over 30 Years of Quality Through Innovation

Low Noise, Monolithic Dual N-Channel JFET Amplifier

LOW INPUT CAPACITANCE MONOLITHIC DUAL N-CHANNEL JFET

Features

- Low Noise: e_n = 2.5nV/√Hz (typ), f = 1kHz, NBW = 1Hz
- Very Low Common Source Input Capacitance of $C_{ISS} = 3pF typ$ and 8pF- max
- High Slew Rate
- Low Offset/Drift Voltage
- Low Gate Leakage $\mathsf{I}_{\mathsf{GSS}}$ and I_{G}
- High CMRR 102 dB

Benefits

- Tight Differential Voltage Match vs. Current
- Improved Op Amp Speed Settling Time Accuracy
- Minimum Input Error Trimming Error Voltage
- Lower Intermodulation Distortion

Applications

- Wideband Differential Amplifiers
- High Speed Temperature Compensated Single Ended Input Amplifier Amps
- High Speed Comparators
- Impedance Converters
- Sonobouys and Hydrophones
- Acoustic Sensors

Description

The LS843 Series is the industry's lowest input capacitance and low-noise monolithic dual N-Channel JFET. Low input capacitance substantially reduces intermodulation distortion. In addition, these dual JFETs feature tight offset voltage and low drift over temperature range, and are targeted for use in a wide range of precision instrumentation and sensor applications.

The LS843 Series is available in surface mount plastic SOIC 8L, PDIP 8L and SOT-23 6L packages. Additionally, it is offered in thru-hole metal cans; the TO-71 6L and TO-78 6L package.

For an equivalent single N-Channel version refer to the LSK189 datasheet. LS843 Series TO-71 6L and SOIC 8L are fit, form and pin compatible to the same LSK389 product.

The LS843 Series provides an increase in capabilities for a wide range of low-noise applications.

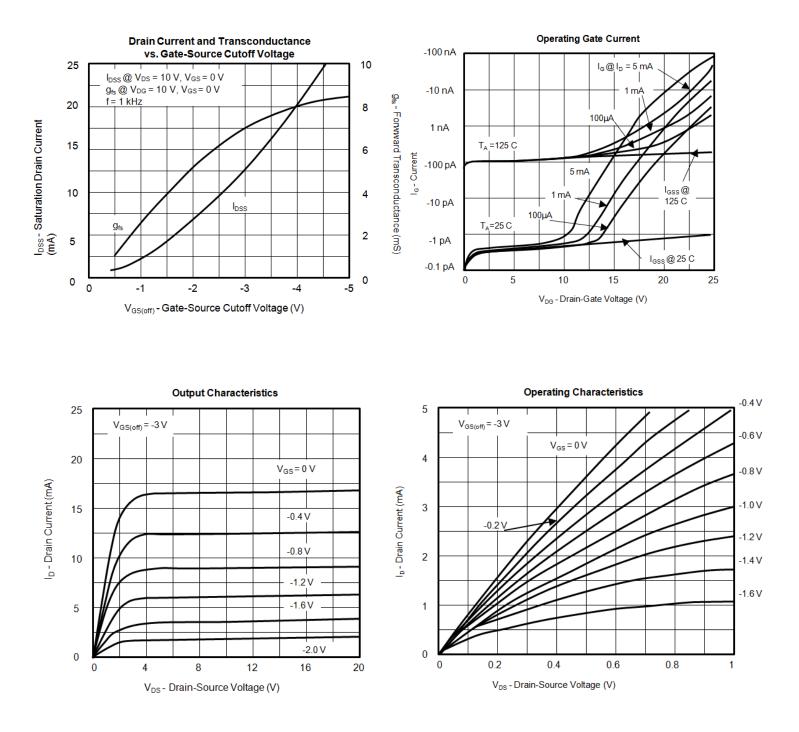
The most significant aspect of the LS843 Series is how it combines a noise level comparable with the LSK389 while having much lower gate-to-drain capacitance, 4pF versus the 25pF. The slightly higher noise of the LS843 Series, versus the LSK389, is not significant in most instances, while the much lower capacitance enables designers to produce simpler, more elegant circuit designs with fewer devices that cost less in production.

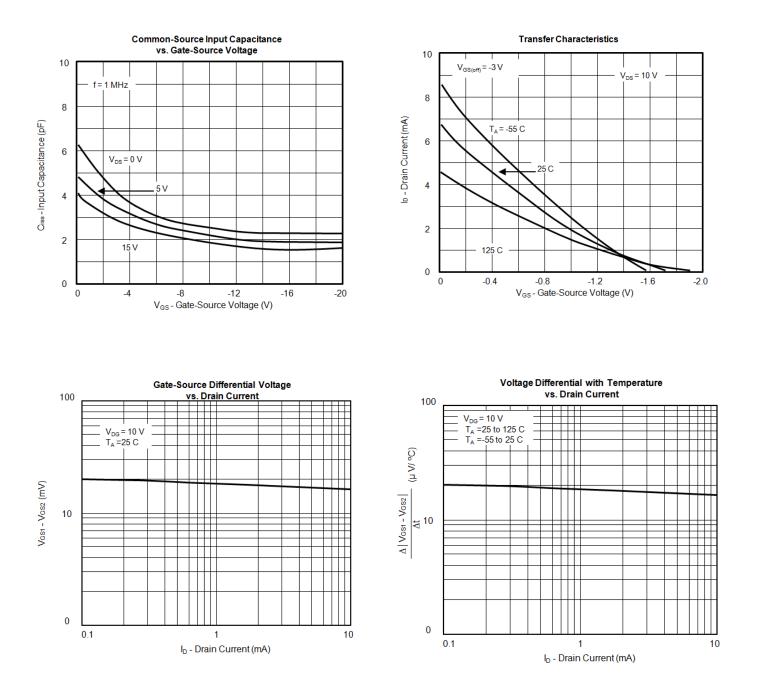
Like the Linear Systems LSK389, the LS843 Series features a unique design construction of interleaving both JFETs on the same piece of silicon to provide excellent matching and thermal tracking, as well a low-noise profile having nearly zero popcorn noise.

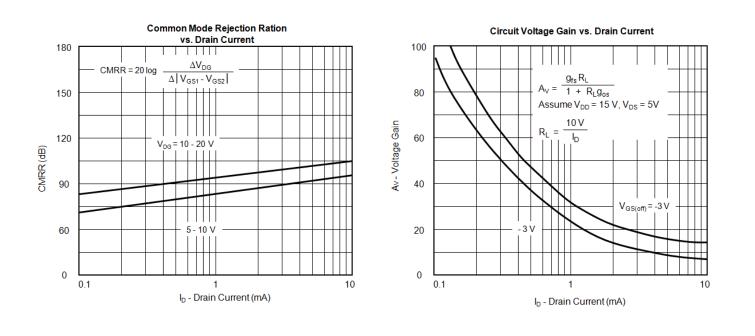
Electrical Characteristics @ 25°C (unless otherwise noted)

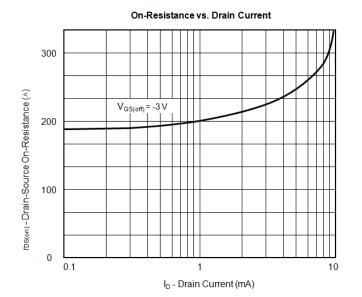
SYMBOL	CHARACTERISTIC	LS843	LS844	LS845	UNITS	CONDITIONS	
I V _{GS1-2} / TI max.	$_{-2}$ / TI max. Drift vs. Temperature 5 10 25 μ V/°	5	10	25 μV/ºC		V _{DG} = 10V	I _D = 500μA
TVGS1-27 TTTTAX.					μν/Ο	T _A = -55°C to +125°C	
IV _{GS1-2} I max.	Offset Voltage	1	5	15	mV	V _{GS} = 10V	I _D = 500μA

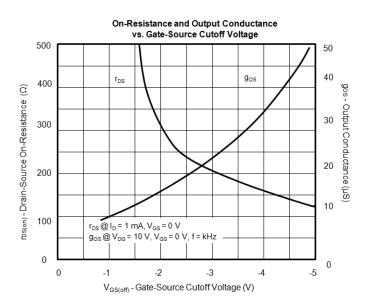
SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS		
BV _{GSS}	Breakdown Voltage	-60		-	V	V _{DS} = 0	I⊳= -1nA	
BV _{GGO}	Gate-to-Gate Breakdown	±60			V	I _{GGO} = ±1μΑ	I _D = 0	I _S = 0
G _{fss}	TRANSCONDUCTANCE Full Conduction	1500			μS	V _{DS} = 15V	V _{GS} = 0	f = 1kHz
G _{fs}	Typical Conduction	1000	1500		μS	V _{DS} = 15V		
Gfs1-2/Gfs1	Mismatch		0.6	3	%	VDS- 13V	I⊳= 500µA	
IDSS	DRAIN CURRENT Full Conduction	1.5	5	15	mA	Vos= 15V	V _{GS} = 0	
I _{DSS1-2} /I _{DSS}	Mismatch at Full Conduction		1	5	%	VDS- 13V	VGS- U	
V _{GS} (off)	GATE VOLTAGE Pinchoff Voltage	-1		-3.5	V	V _{DS} = 15V	I₀= 1nA	
V _{GS}	Operating Range	-0.5		-3.5	V	V _{DS} = 15V	I _D = 500μA	
-lG	GATE CURRENT Operating		15	50	pА	V _{DG} = 15V	I _D = 500µA	
-lg	High Temperature			50	nA	V _{DG} = 15V	I⊳= 500µA	T _A =+125⁰C
-l _G	Reduced VDG		5	30	pА	V _{DG} = 3V	I⊳= 500µA	
-l _{GSS}	At Full Conduction			100	pА	V _{GS} = 15V	V _{GS} = 0	
Goss	OUTPUT CONDUCTANCE Full Conduction			40	μS	V _{DS} = 15V	V _{GS} = 0	
Gos	Operating		2.0	2.7	μS	V _{DS} = 15V	I₀= 200µA	
Gos 1-2	Differential		0.02	0.2	μS	vus- 10v	υ– 200μΑ	

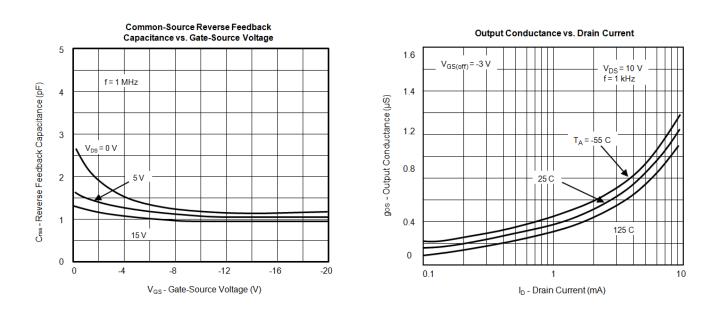

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS	6
	COMMON MODE REJECTION						
CMRR	20 log ()/ os s ()/ os	90	100		dB	V _{DS} = 10 to 20V	I⊳= 500µA
CMRR	-20 log ΔV _{GS1-2} / ΔV _{DS}		85		dB	V _{DS} = 5 to 10V	I _D = 500µA
NF	<u>NOISE</u> Figure	-		0.5	dB	V _{DS} = 15V V _{GS} = 0 f= 100Hz NBW= 6Hz	R _G = 10MΩ <u>z</u>
en	Voltage			7	nV/Hz	V _{DS} = 15V I _D = 500μA NBW= 1Hz	f= 1kHz
en	Voltage			11	nV/Hz	V _{DS} = 15V I _D = 500μA NBW= 1Hz	f= 10Hz
C _{ISS}	CAPACITANCE Input			8	pF	V _{DS} = 15V Ι _D = 500μΑ	f= 1mHz
Crss	Reverse Transfer			3	pF		
C _{DD}	Drain-to-Drain		0.5		pF	V _{DD} = 15V I _D = 500µA	f= 1mHz

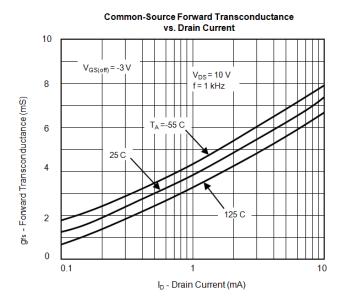

Notes:

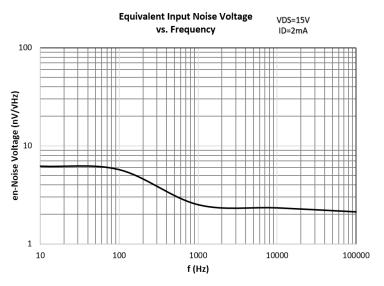

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse width $\leq 2_{ms}$.
- 3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate electrical polarity only.
- 4. Derate 2.4 mW/°C above 25°C.
 5. Derate 4 mW/°C above 25°C.

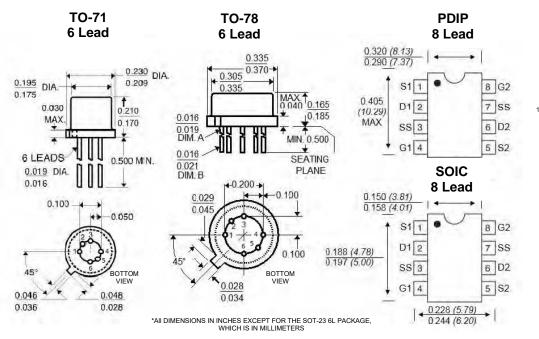

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

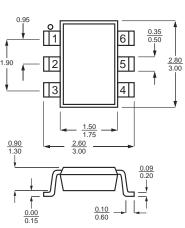

Typical Characteristics











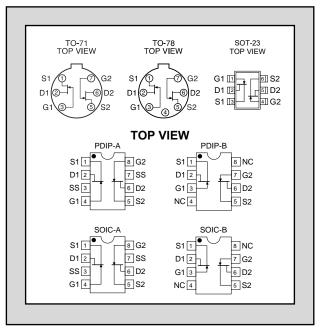
Package Dimensions:

SOT-23

6 Lead

Ordering Information:

Standard Part Call-Out											
LS843 TO-71 6L RoHS	LS844 TO-71 6L RoHS	LS845 TO-71 6L RoHS									
LS843 TO-78 6L RoHS	LS844 TO-78 6L RoHS	LS845 TO-78 6L RoHS									
LS843 SOT-23 6L RoHS	LS844 SOT-23 6L RoHS	LS845 SOT-23 6L RoHS									
LS843 SOIC 8L RoHS	LS844 SOIC 8L RoHS	LS845 SOIC 8L RoHS									
LS843 PDIP 8L RoHS	LS844 PDIP 8L RoHS	LS845 PDIP 8L RoHS									
Custom Part Call-Out (Custom Part	s Include SEL + 4 Digit Numeric Code)										
LS843 TO-71 6L RoHS SELXXXX	LS844 TO-71 6L RoHS SELXXXX	LS845 TO-71 6L RoHS SELXXXX									
LS843 TO-78 6L RoHS SELXXXX	LS844 TO-78 6L RoHS SELXXXX	LS845 TO-78 6L RoHS SELXXXX									
LS843 SOT-23 6L RoHS SELXXXX	LS844 SOT-23 6L RoHS SELXXXX	LS845 SOT-23 6L RoHS SELXXXX									
LS843 SOIC 8L RoHS SELXXXX	LS844 SOIC 8L RoHS SELXXXX	LS845 SOIC 8L RoHS SELXXXX									
LS843 PDIP 8L RoHS SELXXXX	LS844 PDIP 8L RoHS SELXXXX	LS845 PDIP 8L RoHS SELXXXX									

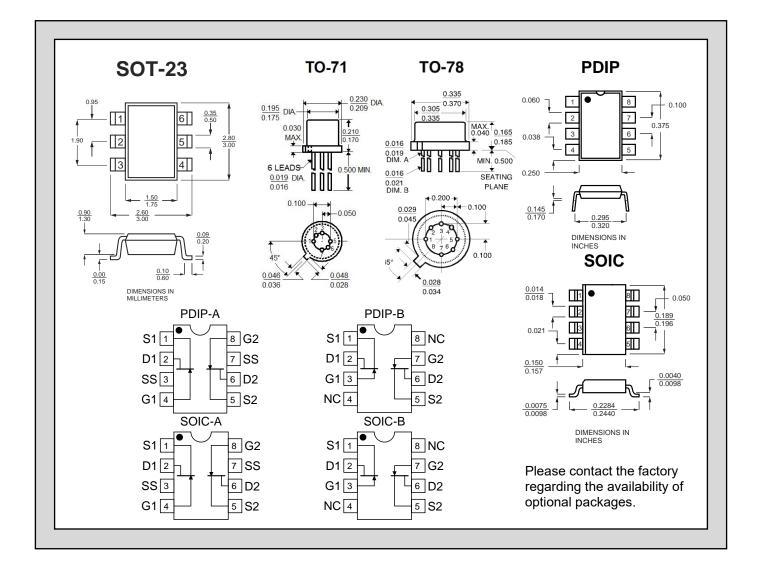

LINEAR SYSTEMS

Over 30 Years of Quality Through Innovation

FEATURES							
Improved Replacement for SILICONIX, FAIRCHILD, & NATIONAL: 2N5911 & 2N5912							
LOW NOISE (10kHz)	$e_n \sim 4 n V / \sqrt{Hz}$						
HIGH TRANSCONDUCTANCE (100MHz)	g _{fs} ≥ 4000µS						
ABSOLUTE MAXIMUM RATINGS ¹							
@ 25 °C (unless otherwise stated)							
Maximum Temperatures							
Storage Temperature	-55 to +150 °C						
Operating Junction Temperature	-55 to +150 °C						
Maximum Power Dissipation							
Continuous Power Dissipation (Total) ⁴	500mW						
Maximum Currents							
Gate Current	50mA						
Maximum Voltages							
Gate to Drain	-25V						
Gate to Source	-25V						

LS5911 LS5912 LS5912C

IMPROVED LOW NOISE WIDEBAND MONOLITHIC DUAL N-CHANNEL JFET AMPLIFIER


MATCHING ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

OVMDOL		TVD	LS5	911	LS5	912	LS5	LS5912C		CONDITIONS
SYMBOL	CHARACTERISTIC	TYP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
VGS1-VGS2	Differential Gate to Source Cutoff Voltage			10		15		40	mV	V _{DG} = 10V, I _D = 5mA
$\frac{\Delta \! \left V_{\text{GS1}} \! - \! V_{\text{GS2}} \right }{\Delta T}$	Differential Gate to Source Voltage Change with Temperature			20		40		40	µV/°C	V _{DG} = 10V, I _D = 5mA T _A = -55 to +125°C
IDSS1 IDSS2	Saturation Drain Current Ratio		0.95	1	0.95	1	0.95	1		V _{DS} = 10V, V _{GS} = 0V Notes 2, 3
G1- G2	Differential Gate Current			20		20		20	nA	V _{DG} = 10V, I _D = 5mA T _A = +125°C
$\frac{g_{fs1}}{g_{fs2}}$	Forward Transconductance Ratio		0.95	1	0.95	1	0.95	1		$V_{DS} = 10V, I_D = 5mA$ f = 1kHz ³
CMRR	Common Mode Rejection Ratio	85							dB	$V_{DG} = 5V$ to 10V I _D = 5mA

STATIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

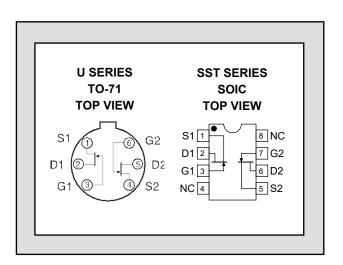
SYM.	CHARACTERISTIC	ТҮР	LS5	5911	LS5	912	LS5	912C	UNIT	CONDITIONS	
5 T WI.	CHARACTERISTIC	IIF	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS	
BV _{GSS}	Gate to Source Breakdown		-25		-25		-25			I_{G} = -1µA, V_{DS} = 0V	
V _{GS(off)}	Gate to Source Cutoff Voltage		-1	-5	-1	-5	-1	-5	V	V_{DS} = 10V, I_{D} = 1nA	
V _{GS(F)}	Gate to Source Forward Voltage	0.7							v	I_G = 1mA, V_{DS} = 0V	
V _{GS}	Gate to Source Voltage		-0.3	-4	-0.3	-4	-0.3	-4		V_{DG} = 10V, I _G = 5mA	
I _{DSS}	Drain to Source Saturation		7	40	7	40	7	40	mA	V_{DS} = 10V, V_{GS} = 0V	
Igss	Gate Leakage Current	-1		-50		-50		-50	n۸	V_{GS} = -15V, V_{DS} = 0V	
lg	Gate Operating Current	-1		-50		-50		-50	pА	V_{DG} = 10V, I_{D} = 5mA	
IG1G2	Gate to Gate Isolation Current			±1		±1		±1	uA	$V_{G1}-V_{G2}=\pm 25V_{ID} = I_{S} = 0$	

OVM	CHARACTERISTIC		TVD	LS5	911	LS5	912	LS5	912C		CONDITIONS	
SYM.	CHARACTERISTIC		ТҮР	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS	
<i>a.</i>	Forward	f = 1 kHz		4000	10000	4000	10000	4000	10000			
g fs	Transconductance	<i>f</i> = 100MHz	7000							μS	$V_{20} = 10 V_{10} = 5 m A$	
~	Output Conductores	f = 1 kHz			100		100		100	μο	V_{DG} = 10V, I_D = 5mA	
gos	Output Conductance	f = 100MHz	120									
Ciss	Input Capacitance				5		5		5	~F	V _{DG} = 10V, I _D = 5mA	
Crss	Reverse Transfer Cap	pacitance			1.2		1.2		1.2	pF	f = 1MHz	
NF	Noise Figure				1		1		1	dB	V _{DG} = 10V, I _D = 5mA f = 10kHz, R _G = 100KΩ	
	Equivalent Input	<i>f</i> = 100Hz	7		20		20		20	nV/√Hz	$V_{DG} = 10V, I_D = 5mA$ f = 100Hz	
en	Noise Voltage	<i>f</i> = 10kHz	4		10		10		10	nV/√Hz	$V_{DG} = 10V, I_D = 5mA$ f = 10kHz	

NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse Test: PW \leq 300µs Duty Cycle \leq 3%
- 3. Assumes smaller value in numerator.
- 4. Derate 4mW/°C above 25°C.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

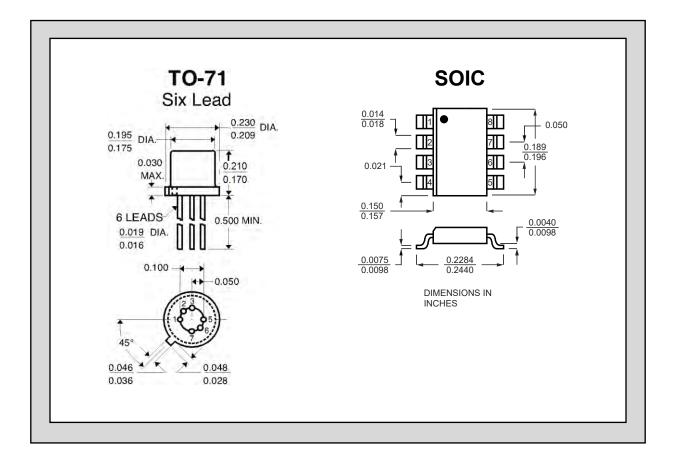

LINEAR SYSTEMS

Improved Standard Products[®]

FEATURES							
Direct Replacement for SILICONIX U/SST440 & U/SST441							
HIGH CMRR	CMRR ≥ 85dB						
LOW GATE LEAKAGE	l _{GSS} ≤ 1pA						
ABSOLUTE MAXIMUM RATINGS ¹							
@ 25 °C (unless otherwise stated)							
Maximum Temperatures							
Storage Temperature	-55 to +150 °C						
Operating Junction Temperature	-55 to +150 °C						
Maximum Power Dissipation @ TA = 25°C							
Continuous Power Dissipation (Total)	500mW						
Maximum Currents							
Gate Current	50mA						
Maximum Voltages							
Gate to Drain	-25V						
Gate to Source	-25V						
Gate to Gate	±50V						

<u>U/SST440, 441</u>

WIDEBAND HIGH GAIN MONOLITHIC DUAL N-CHANNEL JFET AMPLIFIER


MATCHING CHARACTERISTICS @ 25 °C (unless otherwise stated)

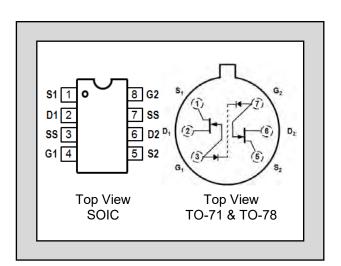
SYMBOL	CHARACTERISTIC			TYP	MAX	UNITS	CONDITIONS
VGS1 - VGS2	Differential Gate to	U/SST440			10	mV	V _{DG} = 10V, I _D = 5mA
V GS1 - V GS2	Source Cutoff Voltage	U/SST441			20	mv	VDG = 10V, ID = 5IIIA
$\frac{\Delta \left V_{\text{GS1}} - V_{\text{GS2}} \right }{\Delta T}$		Differential Gate to Source Cutoff Voltage Change with Temperature		20		µV/°C	V _{DG} = 10V, I _D = 5mA T _A = -55 to +125°C
IDSS1 IDSS2	Gate to Source Saturation Current Ratio ³			0.98			V _{DS} = 10V, V _{GS} = 0V
gfs1 gfs2	Forward Transconductance Ratio ²			0.97			V _{DS} = 10V, I _D = 5mA, <i>f</i> = 1kHz
CMRR	Common Mode Rejection Ra	itio		85		dB	V_{DG} = 5 to 10V, I_D = 5mA

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-25			V	I _G = -1μΑ, V _{DS} = 0V
V _{GS(off)}	Gate to Source Cutoff Voltage	-1	-3.5	-6	V	V _{DS} = 10V, I _D = 1nA
IDSS	Gate to Source Saturation Current ²	6	15	30	mA	V _{DS} = 10V, V _{GS} = 0V
Igss	Gate Leakage Current		-1	-500	n۸	V _{GS} = -15V, V _{DS} = 0V
lg	Gate Operating Current		-1	-500	рА	V _{DG} = 10V, I _D = 5mA

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
g fs	Forward Transconductance	4.5	6	9	mS	V _{DS} = 10V, I _D = 5mA, <i>f</i> = 1kHz
gos	Output Conductance		70	200	μS	$v_{DS} = 10v$, $I_D = 5IIIA$, $I = 1KHZ$
Ciss	Input Capacitance		3		ъĘ	$V_{22} = 10V_{12} = 5mA_{12} = 1MHz$
Crss	Reverse Transfer Capacitance		1		pF	$V_{DS} = 10V, I_D = 5mA, f = 1MHz$
en	Equivalent Input Noise Voltage		4		nV/√Hz	V_{DS} = 10V, I_{D} = 5mA, f = 10kHz

NOTES:

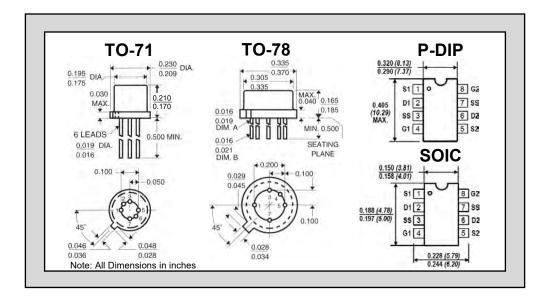

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse Test: PW \leq 300µs Duty Cycle \leq 3%
- 3. Assumes smaller value in numerator.

Over 30 Years of Quality Through Innovation

FEATURE	S						
ULTRA LC	W DRIFT	ΔV _{GS1-2} /Δ	T│= 5µV/ºC max.				
ULTRA LC	W NOISE	I _G =80fA TYP.					
LOW NOIS	SE	e _n =70nV/√	Hz TYP.				
LOW CAP	ACITANCE	C _{ISS} =3pf m	ax.				
ABSOLUTE MAXIMUM RATINGS NOTE 1							
@ 25°C (unless otherwise noted)							
Maximum Temperatures							
Storage T	emperature		-55 to +150°C				
Operating	Junction Temperature	-55 to +150°C					
Maximum	Voltage and Current	for Each Tr	ansistor <u>NOTE 1</u>				
-V _{GSS}	Gate Voltage to Drain	or Source	40V				
-V _{DSO}	Drain to Source Volta	ge	40V				
-I _{G(f)}	Gate Forward Curren	t	10mA				
-l _G	Gate Reverse Curren	10µA					
Maximum	Power Dissipation @	2 TA = 25⁰C					
Continuou	is Power Dissipation (T	otal)	500mW				

LS830 LS831 LS832 LS833

ULTRA LOW LEAKAGE LOW DRIFT MONOLITHIC DUAL N-CHANNEL JFET AMPLIFIER



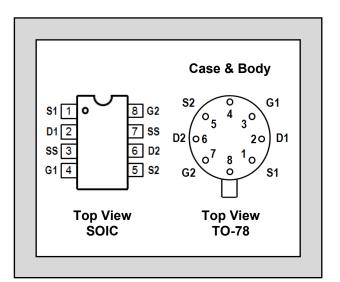
SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS		
BV _{GSS}	Breakdown Voltage	-40	-60		V	V _{DS} = 0	I _G = -1nA	
BV _{GGO}	Gate-to-Gate Breakdown	±40			V	I _G = ±1μΑ	I _D = 0	Is = 0
	TRANSCONDUCTANCE							
g fss	Full Conduction	70	300	500	μS	V _{DG} = 10V	V _{GS} = 0	f = 1kHz
g fs	Typical Operation	50	100	200	μS	V _{DG} = 10V	I _D = 30μΑ	f = 1kHz
g _{fs1-2} /g _{fs}	Differential	-	1	5	%			
	DRAIN CURRENT							
I _{DSS}	Full Conduction	60	400	1000	μA			
DSS1-2/IDSS	Differential at Full Conduction		2	5	%	V _{DG} = 10V	V _{GS} = 0	

ELECTRICAL CHARACTERISTICS TA = 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	LS830	LS831	LS832	LS833	UNITS	CONDITIONS	
$\Delta V_{GS1-2}/\Delta T$ max.	Drift vs. Temperature	5	10	20	75	µV/⁰C	V _{DG} = 10V	I _D = 30μΑ
							$T_A = -55^{\circ}C$ to \cdot	+125⁰C
V _{GS1-2} max.	Offset Voltage	25	25	25	25	mV	$V_{DG} = 10V$	I _D = 30μΑ
-I _G typical	Operating	0.1	0.1	0.1	0.5	pА		
-I _G typical	High Temperature	0.1	0.1	0.1	0.5	nA	TA= +125°C	
I _{GSS} typical	At Full Conduction	0.2	0.2	0.2	1.0	pА	V _{GS} = 20V, V _G	_{GS} = 0V
I _{GSS} typical	High Temperature	0.5	0.5	0.5	1.0	nA	V _{GS} = 0	V _{GS} = 20V
							TA= +125°C	

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS		
	GATE-SOURCE							
V _{GS} (off)	Cutoff Voltage	-0.6	-2	-4.5	V	V _{DS} = 10V	I _D = 1nA	
V _G s	Operating Range			-4	V	V _{DG} = 10V	I⊳= 30µA	
	GATE CURRENT							
lggo	Gate-to-Gate Leakage		1		pА	V_{GG} = ±20V	$I_D = I_S = 0A$	
	OUTPUT CONDUCTANCE							
goss	Full Conduction			5	μS	V_{DG} = 10V	V _{GS} = 0	
gos	Operating			0.5	μS	V _{DG} = 10V	I⊳= 30µA	
g os 1-2	Differential			0.1	μS			
	COMMON MODE REJECTION							
CMRR	-20 log ΔV _{GS1-2} /ΔV _{DS}		90		dB	ΔV_{DS} = 10 to 20V I _D =3		I⊳=30µA
CMRR	-20 log ΔV _{GS1-2} /ΔV _{DS}		90		dB	ΔV_{DS} = 5 to 10	/	I⊳=30µA
	NOISE							
NF	Figure			1	dB	V _{DS} = 10V	V _{GS} = 0	R_G =10M Ω
						f= 100Hz	NBW= 6Hz	
en	Voltage		20	70	nV/√Hz	V _{DG} = 10V	I _D = 30µA	f= 10Hz
						NBW= 1Hz		
CISS	Input			3	pF	V _{DS} = 10V	V _{GS} = 0	f= 1MHz
Crss	Reverse Transfer			1.5	pF	V _{DS} = 10V	V _{GS} = 0	f= 1MHz
C _{DD}	Drain-to-Drain			0.1	pF	V _{DG} = 10V	I _D = 30µA	

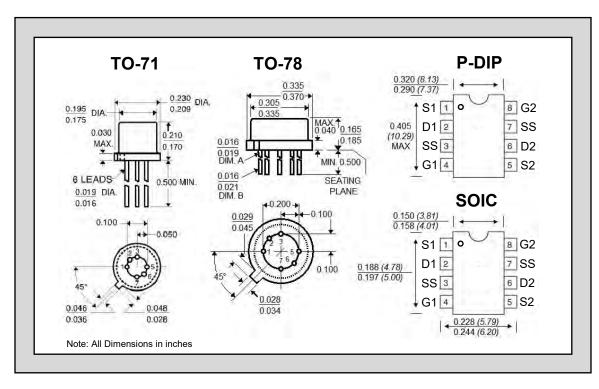
NOTES:


1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired

Improved Standard Products[®]

FEATUR	RES							
LOW DF	RIFT	$ \Delta V_{GS1-2}/\Delta T = 5\mu V/^{\circ}C max.$						
ULTRA	LOW LEAKAGE	Ig=150	IFA TYP.					
LOW PI	NCHOFF	V _P =2V	TYP.					
ABSOLUTE MAXIMUM RATINGS ¹								
@ 25°C	@ 25°C (unless otherwise noted)							
Maximum Temperatures								
Storage	Temperature		-55 to +150°C					
Operatii	ng Junction Temperature		-55 to +150°C					
Maximu	m Voltage and Current f	or Each	Transistor ¹					
-V _{GSS}	Gate Voltage to Drain or	Source	40V					
-I _{G(f)}	Gate Forward Current		10mA					
-I _G	Gate Reverse Current	10µA						
Maximu	m Power Dissipation							
Device	Dissipation @ TA=25°C -	Total	500mW ²					

<u>LS5905 LS5906 LS5907</u> <u>LS5908 LS5909</u>

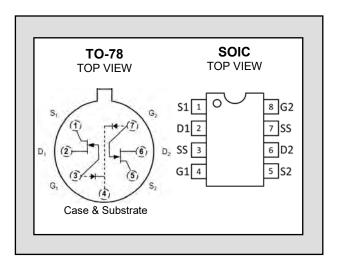

LOW LEAKAGE LOW DRIFT MONOLITHIC DUAL N-CHANNEL JFET AMPLIFIER

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	LS590	6 LS59	907	LS590	8 LS	5909	LS5	905	UNITS	CONDITIO	NS
$\Delta V_{GS1-2}/\Delta T$ max.	Drift vs. Temperature	5	10)	20		40	4	0	µV/⁰C	V _{DG} = 10V,	I _D =30µA
1 1	·									•	T _A = -55°C 1	•
V _{GS1-2} max.	Offset Voltage	5	5		10		15	1	5	mV	V _{DG} =10V	I _D =30µA
-I _G Max	Operating	1	1		1		1	3	3	pА		
-I _G Max	High Temperature	1	1		1		1	3	3	nA	T _A =+125 °C	
-I _{GSS} Max	Gate Reverse Current	2	2		2		2	5	5	pА	V _{DS} =0V	V _{GS} =-20V
-I _{GSS} Max	Gate Reverse Current	5	5		5		5	1	0	nA	T _A =+125 ℃	
SYMBOL	CHARACTERISTIC		MIN.	T	YP.	IAX.	UNI	TS	CO	NDITION	S	
BV _{GSS}	Breakdown Voltage		-40	-(60		V	'	VDS	= 0	I₀= -1µA	
BV _{GGO}	Gate-to-Gate Breakdown		±40				V	'	I _{GG} =	= ±1µA	I _D = 0	I _S = 0
	TRANSCONDUCTANCE											
G _{fss}	Full Conduction		70	3	00	500	μ	5	V_{DG}	= 10V	V _{GS} = 0	f = 1kHz
G _{fs}	Typical Operation		50	1	00	200	μS	S	V_{DG}	= 10V	I _D = 30μΑ	f = 1kHz
Gfs1/Gfs2 ³	Transconductance Ratio				1	5	%)				
	DRAIN CURRENT											
IDSS	Full Conduction		60	4	00	1000	μA	4	Vdg	= 10V	V _{GS} = 0	
IDSS1/IDSS2 ³	Drain Current Ratio				2	5	%)				
	GATE VOLTAGE											
V _{GS} (off)	Gate-Source Cutoff Volta	ige	-0.6	-	-2	-4.5	V	,	V_{DS}	= 10V	I _D = 1nA	
V _{GS}	Operating Range					-4	V	'	VDS	= 10V	I _D = 30µA	
	GATE CURRENT	T										
lggo	Gate-to-Gate Leakage			1	±1		pA	4	Vgg	= 20V		

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
	OUTPUT CONDUCTANCE					
g _{oss}	Full Conduction			5	μS	V _{DG} = 10V V _{GS} = 0
gos	Operating		0.1		μS	V _{DG} = 10V I _D = 30µA
gos1-2	Differential		0.01	0.2	μS	
	COMMON MODE REJECTION					
CMRR	-20 log ΔV _{GS1-2} /ΔV _{DS}		90		dB	ΔV_{DS} = 10 to 20V I _D =30µA
CMRR	-20 log ΔV _{GS1-2} /ΔV _{DS}		90		dB	ΔV_{DS} = 5 to 10V I _D =30µA
	NOISE					
NF	Figure			1	dB	$V_{DS}\text{= 10V } V_{GS}\text{= 0} \qquad R_{G}\text{= 10M}\Omega$
						f= 100Hz NBW=6Hz
en	Voltage		20	70	nV/√Hz	V _{DS} = 10V I _D = 30µA f= 10Hz
						NBW=1Hz
	CAPACITANCE					
C _{ISS}	Input			3	pF	V_{DS} = 10V V_{GS} = 0 f= 1MHz
Crss	Reverse Transfer			1.5	pF	V _{DS} = 10V V _{GS} = 0 f= 1MHz
C _{DD}	Drain-to-Drain			0.1	pF	V_{DG} = 20V I _D = 30µA f= 1MHz

NOTES:

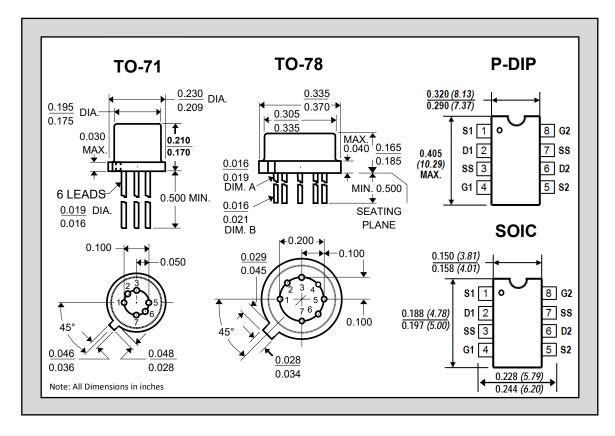

- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired.
- 2. Derate 4mW°C above 25°C
- 3. Assume smaller value in the numerator.

Improved Standard Products[®]

FEATU	RES							
HIGH IN	IPUT IMPEDANCE	I _G =0.25pA MAX						
HIGH G	AIN	gfs=12	20µS MIN					
LOW PC	OWER OPERATION	V _{GS(off)}	=2V MAX					
ABSOLUTE MAXIMUM RATINGS NOTE 1								
@ 25 °C	@ 25 °C (unless otherwise noted)							
Maximum Temperatures								
Storage	Temperature		-55 to +150°C					
Operati	ng Junction Temperature		-55 to +150°C					
Maximu	m Voltage and Current f	or Each	Transistor NOTE 1					
-V _{GSS}	Gate Voltage to Drain or	Source	40V					
-Vdso	Drain to Source Voltage		40V					
I _{G(f)}	Gate Forward Current	10mA						
Maximu	m Power Dissipation							
Total D	evice Dissipation TA = 25º	С	500 ² mW					

<u>U421, U422, U423, U424,</u> <u>U425, U426</u>

LOW LEAKAGE LOW DRIFT MONOLITHIC DUAL N-CHANNEL JFET AMPLIFIER



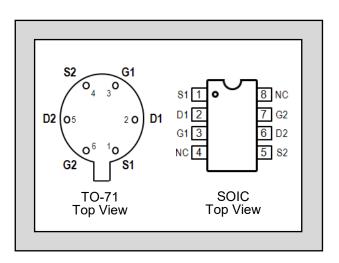
ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC ³	U421	U422	U423	U424	U425	U426	UNITS	CONDITION	IS
$\Delta V_{GS1-2}/\Delta T$ max.	Drift vs. Temperature	10	25	40	10	25	40	µV/⁰C	V_{DG} = 10V	I _D = 30µA
									T _A = -55⁰C t	o +125⁰C
V _{GS1-2} max.	Offset Voltage	10	15	25	10	15	25	mV	V _{DG} =10V	I _D = 30μA
	GATE VOLTAGE									
V _{GS(off)}	Pinchoff Voltage Max	-2.0	-2.0	-2.0	-3.0	-3.0	-3.0	V	V_{DS} =10V	I _D =1nA
	Min	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4			
V _{GS}	Operating Range Max	-1.8	-1.8	-1.8	-2.9	-2.9	-2.9	V	V _{DS} =10V	I⊳=30µA
IgTYP.	Operating	25	25	25	500	500	500	pА	V _{DS} =10V	I⊳=30µA
I _G TYP.	High Temperature	-250	-250	-250	-500	-500	-500	pА	T _A =+125⁰C	
IgssTYP.	Gate Reverse Current	-1.0	-1.0	-1.0	-3.0	-3.0	-3.0	pА	V _{DS} =0V	V _{GS} =-20V
IgssTYP.	Gate Reverse Current	1.0	1.0	1.0	3.0	3.0	3.0	nA	T _A =+125°C	

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS		
BV _{GSS}	Breakdown Voltage	-40	-60		V	V _{DS} = 0V	I _G = -1nA	
BV _{GGO}	Gate-to-Gate Breakdown	±40	1		V	I _{G1G2} = ±1µA	I _D = 0A	Is= 0A
	TRANSCONDUCTANCE							
gfs	Full Conduction	300		1500	μS	V _{DS} = 10V	V _{GS} = 0	f = 1kHz
gfs	Typical Operation	120	200	350	μS	V _{DG} = 10V	I⊳= 30µA	f = 1kHz
	DRAIN CURRENT	60		1000	μA	U421-3	V _{DS} = 10V	V _{GS} = 0
IDSS	Full Conduction	60	-	1800	μA	U424-6		

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
	OUTPUT CONDUCTANCE					
gos	Full Conduction			10	μS	V _{DS} = 10V V _{GS} = 0
gos	Operating		0.1	3.0	μS	V _{DG} = 10V I _D = 30µA
	COMMON MODE REJECTION					
CMRR	-20 log V _{GS1-2} /ΔV _{DS}		90		dB	ΔV_{DS} = 10 to 20V I _D =30µA
CMRR	-20 log V _{GS1-2} /ΔV _{DS}		90		dB	ΔV_{DS} = 5 to 10V I _D =30µA
	NOISE					
NF	Figure			1.0	dB	$V_{DG}\text{=}10V\text{, }I_{D}\text{=}30\mu\text{A}\text{, }R_{G}\text{=}10M\Omega$
						f= 10Hz
en	Voltage		20	70	nV/√Hz	V _{DG} = 10V I _D = 30µA f= 10Hz
			10			V _{DG} = 10V I _D = 30µA f= 1kHz
	CAPACITANCE					
Ciss	Input			3.0	pF	V _{DS} = 10V V _{GS} = 0 f= 1MHz
C _{RSS}	Reverse Transfer			1.5	pF	V_{DS} = 10V V _{GS} = 0 f= 1MHz

NOTES:


- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired
- 2. Derate 4mW/°C above 25°C
- 3. All MIN/TYP/MAX limits are absolute numbers. Negative signs indicate electrical polarity only.

Improved Standard Products[®]

FEATURE	FEATURES						
LOW DRIF	T	V _{GS1-2} /T =	10µV/⁰C TYP.				
LOW NOIS	SE	en=6nV/Hz@	010Hz TYP.				
LOW PINC	CHOFF	V _P =2.5V MA	X.				
ABSOLUT	E MAXIMUM RATING	S <u>NOTE 1</u>					
@ 25 °C (u	unless otherwise noted)					
Maximum	Temperatures						
Storage T	emperature		-55 to +150°C				
Operating	Junction Temperature		-55 to +150°C				
Maximum	Voltage and Current	for Each Tra	nsistor <u>NOTE 1</u>				
-V _{GSS}	Gate Voltage to Drain	or Source	50V				
-V _{DSO}	-V _{DSO} Drain to Source Voltage 50V						
-I _{G(f)} Gate Forward Current 10mA							
Maximum Power Dissipation per side NOTE 2							
Device Di	ssipation TA = 25°C		300mW				

<u>SST/U401 – SST/U406</u>

LOW NOISE LOW DRIFT MONOLITHIC DUAL N-CHANNEL JFET AMPLIFIER

MATCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

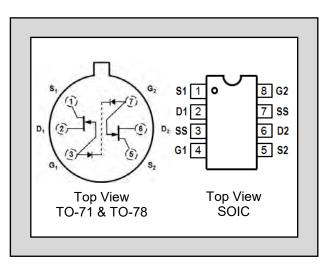
SYMBOL	CHARACTERISTIC	U401	U402	U403	U404	U405	U406	UNITS	CONDITIONS	
V _{GS1-2} /T max.	Drift vs. Temperature	10	10	25	25	40	80	µV/⁰C	V_{DG} = 10V, I_{D} = 200 μ A	
									T _A = -55°C to +125°C	
V _{GS1-2} max.	Offset Voltage	5	10	10	15	20	40	mV	V_{DG} = 10V, I_{D} = 200µA	

ELECTRICAL CHARACTERISTICS TA = 25°C (unless otherwise noted) NOTE 3

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS	3
BV _{GSS}	Breakdown Voltage	-50	-60		V	V _{DS} = 0	I₀= 1nA
BV _{G1G2}	Gate-to-Gate Breakdown	±50		-	V	I _G = ±1μΑ	$I_{D}=0, I_{S}=0$
	TRANSCONDUCTANCE						
G _{fss}	Full Conduction	2000		7000	μS	V _{DG} = 10V	$V_{GS}=0$ f = 1kHz
G _{fs}	Typical Operation	1000		2000	μS	V_{DG} = 15V	I _D = 200µA f = 1kHz
G _{fs1} /G _{fs2}	Mismatch	0.97		1.0			
IDSS	Saturation Drain Current	0.5		10	mA		
IDSS1 IDSS2	Saturation Current Ratio	0.9	0.98	1.0		V _{DG} = 10V	V _{GS} = 0
	GATE VOLTAGE						
$V_{GS}(off) \text{ or } V_P$	Pinchoff Voltage	-0.5		-2.5	V	V _{DS} = 15V	I _D = 1nA
V _{GS}	Operating Range			-2.3	V	V _{DS} = 15V	I _D = 200μΑ
	GATE CURRENT						
lg	Operating		-4	-15	pА	V _{DG} = 15V	I _D = 200µA
l _G	High Temperature			-10	nA	T _A =+125°C	
Igss	Gate Reverse Current			-100	pА	V _{GS} =-30v, V _{DS}	s= 0V
I _{G1G2}	Gate to Gate Isolation Current			±1.0	μA	V _{G1} -V _{G2} = ±50	V, I _D = IS= 0

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
	OUTPUT CONDUCTANCE					
Goss	Full Conduction			40	μS	V_{DS} = 10V, V_{GS} = 0V, f = 1kHz
Gos	Operating		2	2.7	μS	V _{DS} = 15V, I _D = 200µA, f = 1kHz
	COMMON MODE REJECTION					V _{DG1} = 10V
CMRR	-20 log [(V _{GS1-} V _{GS2})/ΔV _{DG1-2}]	95			dB	$V_{DG2}= 20V I_{D1}= I_{D2}= 200 \mu A$
	NOISE					
NF	Figure			0.5	dB	V _{DS} = 15V V _{GS} = 0 R _G =10M
						f= 100Hz NBW= 6Hz
en	Voltage		6	20	nV/Hz	V _{DS} = 15V I _D = 200µA f= 10Hz
						NBW= 1Hz
	CAPACITANCE					
Ciss	Input		4	8	pF	V _{DS} = 15V I _D = 200µA f= 1MHz
C _{RSS}	Reverse Transfer		1.5	3	pF	

NOTES:

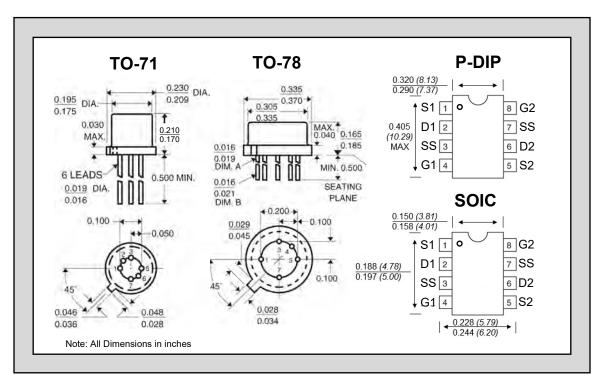

- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired.
- 2. Derate 2.4mW/°C when TA is greater than 25°C
- 3. All MIN/TYP/MAX limits are absolute numbers. Negative signs indicate electrical polarity only.

Improved Standard Products[®]

FEATUR	FEATURES					
LOW DF	RIFT	I∆V _{GS1}	₋₂ /ΔT =5μV/°C max.			
LOW LE	AKAGE	l _G =20p	DA TYP.			
LOW NO	DISE	en=101	Nv/√Hz TYP.			
ABSOL	UTE MAXIMUM RATINGS	5 ¹				
@ 25 °C	(unless otherwise noted)					
Maximu	m Temperatures					
Storage	Temperature		-55 to +150°C			
Operati	ng Junction Temperature		-55 to +150°C			
Maximu	m Voltage and Current f	or Each	Transistor ¹			
-V _{GSS}	Gate Voltage to Drain or	Source	60V			
-I _{G(f)}	-I _{G(f)} Gate Forward Current 50mV					
Maximu	Maximum Power Dissipation					
Device	Dissipation @ Free Air - T	otal	400mW @ 25°C ²			

<u>LS3954A LS3954</u> <u>LS3955 LS3956 LS3958</u>

LOW NOISE LOW DRIFT MONOLITHIC DUAL N-CHANNEL JFET AMPLIFIER



ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

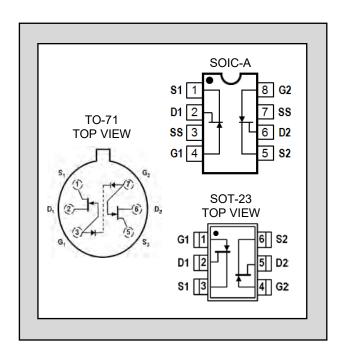
SYMBOL	CHARACTERISTIC	LS3954A	LS3954	LS3955	LS3956	LS3958	UNITS	CONDITIONS
$\Delta V_{GS1-2}/\Delta T$ max.	Drift vs. Temperature	5	10	25	50	100	µV/⁰C	V _{DG} = 20V, I _D =200µA
								T _A = -55⁰C to +125⁰C
V _{GS1-2} max.	Offset Voltage	5	5	10	15	25	mV	V _{DG} =20V, I _D =200µA

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS		
BV _{GSS}	Breakdown Voltage	60			V	V _{DS} = 0	I _G = 1μΑ	
BV _{GGO}	Gate-to-Gate Breakdown	60			V	l _{GG} = ±1μA	I _D = 0	Is= 0
	TRANSCONDUCTANCE							
g fss	Full Conduction	1000	2000	4000	μS	V _{DG} = 20V	V _{GS} = 0	f = 1kHz
g _{fs}	Typical Operation	500	700	1250	μS	V _{DG} = 20V	I _D = 200μΑ	
g _{fs1-2} /g _{fs}	Differential		±0.6	±3	%			
	DRAIN CURRENT							
I _{DSS}	Full Conduction	0.5	2	5	mA	V _{DS} = 20V	V _{GS} = 0	
IDSS1-2/IDSS	Differential		±1	±5	%			
	GATE VOLTAGE							
V _{GS} (off)	Pinchoff Voltage	-1	-2	-4.5	V	V _{DS} = 20V	I _D = 1nA	
V _{GS}	Operating Range	-0.5		-4	V	V _{DS} = 20V	I⊳= 200µA	
	GATE CURRENT							
-lg	Operating		20	50	pА	V _{DG} = 20V	I⊳= 200µA	
-l _G	High Temperature			50	nA	V _{DG} = 20V	I _D = 200μΑ	T _A =+125 ℃
-lg	Reduced V _{DG}		5		pА	V _{DG} = 10V	I⊳= 200µA	
-Igss	At Full Conduction			100	pА	V _{DG} = 20V	V _{DS} = 0	

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
	OUTPUT CONDUCTANCE					
g _{oss}	Full Conduction			35	μS	V _{DG} = 20V V _{GS} = 0
gos	Operating		0.5	1	μS	V _{DG} = 20V I _D = 200µA
gos1-2	Differential		0.05		μS	
	COMMON MODE REJECTION					
CMRR	-20 log $\Delta V_{GS1-2}/\Delta V_{DS}$		100		dB	ΔV_{DS} = 10 to 20V I _D =200µA
CMRR	-20 log $\Delta V_{GS1-2}/\Delta V_{DS}$		75		dB	ΔV_{DS} = 5 to 10V I _D =200µA
	NOISE					
NF	Figure			0.5	dB	V_{DS} = 20V V_{GS} = 0 R_G =10M Ω
						f= 100Hz NBW=6Hz
en	Voltage			15	nV/√Hz	V _{DS} = 20V I _D = 200µA f= 10Hz
						NBW=1Hz
	CAPACITANCE					
CISS	Input			6	pF	V_{DS} = 20V V _{GS} = 0 f= 1MHz
Crss	Reverse Transfer			2	pF	
C _{DD}	Drain-to-Drain		0.1		pF	V _{DG} = 20V I _D = 200µA

NOTES:

- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired.
- 2. Derate 4mW°C above 25°C


Over 30 Years of Quality Through Innovation

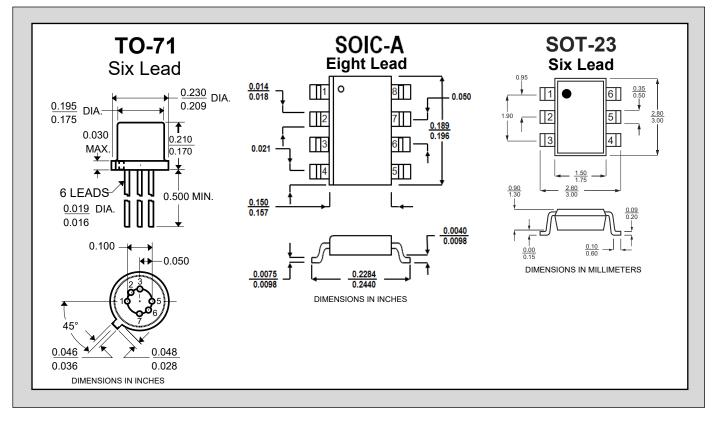
FEATURES	
ULTRA LOW NOISE	$e_n = 4.0 \text{ nV}/\sqrt{Hz}$
LOW INPUT CAPACITANCE	Ciss = 5pF
HIGH TRANSCONDUCTANCE	Gfs ≥ 4000µS

ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-55 to +150°C				
Junction Operating Temperature	-55 to +150°C				
Maximum Power Dissipation, TA = 25°C					
Continuous Power Dissipation, per side ⁴	250mW				
Power Dissipation, total ⁵	500mW				
Maximum Currents					
Gate Forward Current	$I_{G(F)} = 50 \text{mA}$				
Maximum Voltages					
Gate to Source	$V_{GSO} = 25V$				
Gate to Drain	V_{GDO} = 25V				

LSK589

LOW NOISE, LOW CAPACITANCE MONOLITHIC DUAL N-CHANNEL JFET

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)


SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
$\left V_{GS1}-V_{GS2}\right $	Differential Gate to Source Cutoff Voltage			20	mV	V_{DS} = 10V, I_D = 5mA
IDSS1 IDSS2	Gate to Source Saturation Current Ratio	0.9		1.0		V _{DS} = 10V, V _{GS} = 0V (Note 2)
CMRR	$\frac{\text{COMMON MODE REJECTION RATIO}}{-20 \log \left \Delta V_{GS1-2} / \Delta V_{DS} \right }$	85			dB	V_{DG} = 5V to 10V, I_D = 5mA

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
en	Noise Voltage		7		nV/√Hz	V _{DS} = 10V, I _D = 5mA, <i>f</i> = 100Hz
en	Noise Voltage		4		nV/√Hz	V _{DS} = 10V, I _D = 5mA, <i>f</i> = 10kHz
Ciss	Common Source Input Capacitance			5	pF	
C _{RSS}	Common Source Reverse Transfer Capacitance			1.2	pF	$V_{DS} = 10V, I_D = 5mA, f = 1MHz$

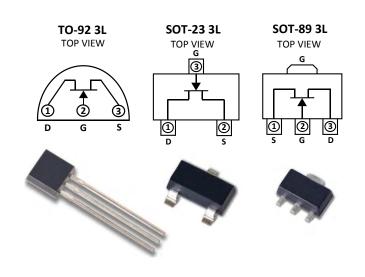
ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	CHARACTERISTIC		TYP	MAX	UNITS	CONDITIONS	
BV _{GSS}	Gate to Source Breakdow	n Voltage	-25			V	V _{DS} = 0, I _D = 1µA	
$V_{GS(OFF)}$	Gate to Source Pinch-off	Voltage	-1.5		-5	V	V _{DS} = 10V, I _D = 1nA	
Vgs	Gate to Source Operating	Voltage	-0.3		-4.0	V	V _{DS} = 10V, I _D = 5mA	
IDSS	Drain to Source Saturatio	n Current	7.0		40	mA	V _{DS} = 10V, V _{GS} = 0V (Note 2)	
l _G	Gate Operating Current			-1	-50	pА	$V_{DG} = 10V, I_{D} = 5mA$	
lgss	Gate to Source Leakage Current				-50	pА	$V_{gs} = -15V, V_{DS} = 0$	
Gos	Output Conductance F =	1kHz			100	μS	V_{DS} = 10V, I_D = 5mA	
NF	Noise Figure	Noise Figure			1.0	dB	$V_{DS} = 10V, I_D = 5mA, R_G = 100K\Omega, f = 100Hz$	
G _{fs}	Forward	<i>f</i> = 1kHz	4000		10000			
Gfs	Transconductance	<i>f</i> = 100MHz		7000			V _{Ds} = 10V, I _D = 5mA	
Gos	Output	<i>f</i> = 1kHz			100	μS	$v_{DS} = 10 v$, $ID - 3IIIA$	
GUS	Transconductance	<i>f</i> = 100MHz		120		1		

PACKAGE DIMENSIONS

NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse Test: PW \leq 300 µs, Duty Cycle \leq 3%
- 3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate electrical polarity only.
- 4. Derate 2.0 mW/°C above 25°C.
- 5. Derate 4 mW/°C above 25°C.


LSK170 A/B/C/D

Over 30 Years of Quality Through Innovation

High Input Impedance, Ultra-Low Noise, Single N-Channel JFET

Ultra-Low Noise at Both High & Low Frequencies With a Narrow Range of IDSS

Absolute Maximum Ratings						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-55 to +150°C					
Junction Operating Temperature	-55 to +135°C					
Maximum Power Dissipation						
Continuous Power Dissipation @ +25°C	400mW					
Maximum Currents						
Gate Forward Current	I _{G(F)} = 10mA					
Maximum Voltages						
Gate to Source	$V_{GSS} = 40V$					
Gate to Drain	V _{GDS} = 40V					

Features

- ULTRA LOW NOISE (f =1khz): $e_n = 0.9 nV/\sqrt{Hz}$
- High Breakdown Voltage: BV_{GSS} = 40V min
- High Gain: G_{fs} = 22mS (typ)
- High Input Impedance: 20GΩ typ
- Low Capacitance: 22pF max
- Improved Second Source Replacement for 2SK170
- For Equivalent Monolithic-Dual, See the LSK389 Series

Benefits

- **Direct Pin-For-Pin Replacement** of Toshiba's 2SK170
- Optimized to Provide Low Noise at Both High and Low Frequencies With a Narrow Range of IDSS and Low Capacitance
- Low Noise to Capacitance Ratio and Narrow Range of Low Value IDSS Provide Solutions for Low Noise Applications Which Cannot Tolerate High Values of Capacitance or Wide Ranges of IDSS

Applications

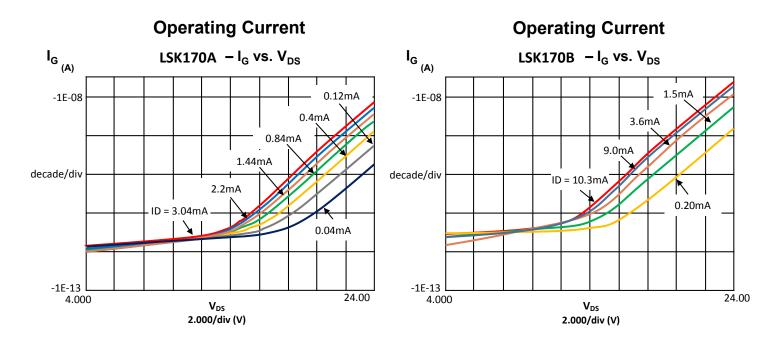
- Audio Amplifiers and Preamps
- **Discrete Low-Noise** ٠ Operational Amplifiers
- Guitar Pickups
- Effects Pedals
- Microphones
- Audio Mixer Consoles
- Acoustic Sensors
- Sonobouys
- Hydrophones

Applications Cont'd

- Chemical and Radiation Detectors
- Instrumentation Amplifiers
- Accelerometers
- **CT Scanners Input Stages**
- Oscilloscope Input Stages
 - Electrometers and Vibrations Detectors

Description

highly desirable, particularly for audio front-end preamplifiers.


The LSK170 is specifically designed for low noise, high input The device is available in a surface mount SOT-23 package, throughimpedance applications within the audio, instrumentation, medical hole TO-92 package and SOT-89 package. The surface mount and sensors markets. The narrow ranges of I_{DSS} grades with the version of the LSK170 Series creates new opportunities for engineers LSK170 promote ease of design, particularly in low voltage seeking to design lower noise circuits in compact embeddable applications. The LSK170 is ideal for portable battery operated applications where shielding and space are critical. The LSK170 applications, and features high BVDss for maximum linear series is a pin for pin replacement of the Toshiba 2SK170 and headroom in high transient program content amplifiers. The series improved functional replacement for the Interfet IF1320, IF1330, has a uniquely linear V_{GS} transfer function for a stability that is IF1331, and IF4500. Contact the factory for tighter noise and other specification selections.

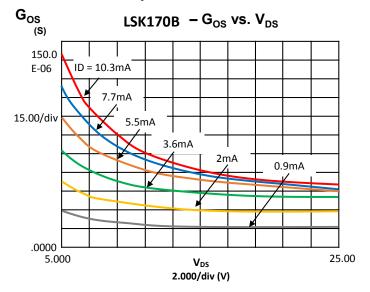
LSK170 Series

SYMBOL	CHARACTERISTIC		MIN	ТҮР	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage		-40.0			V	$V_{DS} = 0V, I_D = -100\mu A$
V _{GS(OFF)}	Gate to Source Pinch-off Volta	ge	-0.2		-2.0	V	$V_{DS} = 10V, I_{D} = 1nA$
V _{GS}	Gate to Source Operating Volt	age		0.5		V	$V_{DS} = 10V, I_{D} = 1mA$
		LSK170A	2.6		6.5		
l _{DSS} ²	Drain to Source Saturation	LSK170B	6.0		12.0	mA	$V_{DS} = 10V_{CS} = 0$
IDSS ⁻	Current	LSK170C	10.0		20.0	ШA	$v_{\rm DS} = 10v, v_{\rm GS} = 0$
		LSK170D	18.0		30.0		
l _G	Gate Operating Current				-0.5	nA	$V_{DG} = 10V, I_D = 1mA$
I _{GSS}	Gate to Source Leakage Curre	nt			-1.0	nA	V_{Gs} = -10V, V_{Ds} = 0V
G _{fs}	Full Conduction Transconducta	ance	14.0	22.0		mS	$V_{DS} = 10V, V_{GS} = 0, f = 1kHz$
G _{fs}	Typical Conduction Transcond	luctance	6.0	10.0		mS	$V_{DS} = 15V, I_{D} = 1mA$
e _n	Noise Voltage			0.9	1.9	nV/√Hz	V_{DS} = 10V, I_D = 2mA, f = 1kHz, NBW = 1Hz
en	Noise Voltage			1.4	4.0	nV/√Hz	V_{DS} = 10V, I_D = 2mA, f = 10Hz, NBW = 1Hz
C _{ISS}	Common Source Input Capacitance			20.0		pF	$V_{DS} = 15V, I_D = 100\mu A, f = 1MHz,$
C _{RSS}	Common Source Reverse Tran	nsfer Cap.		5.0		pF	$V_{DS} = 15V, I_D = 100\mu A, f = 1MHz,$

Electrical Characteristics @ 25°C (unless otherwise stated)

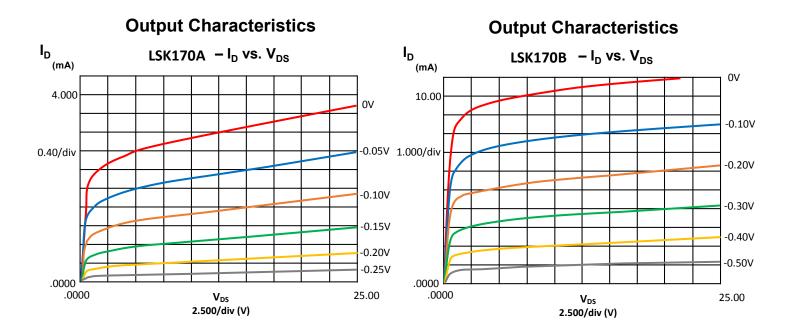
Typical Characteristics

Output Conductance G_{OS} LSK170A - G_{OS} vs. V_{DS} 100.0 $E \cdot 06$ 10.00/div 1.44mA 0.4mA - 0.12mA - 0.04mA

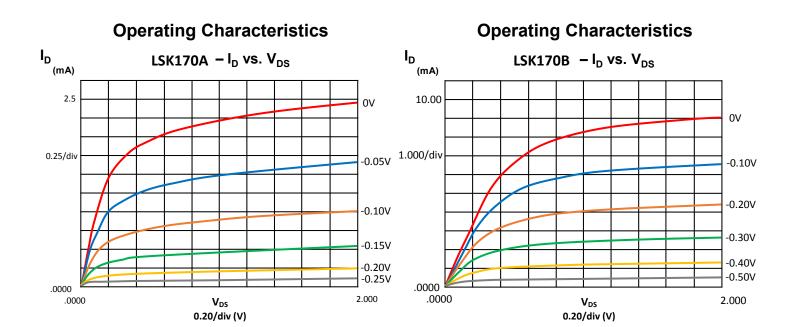

V_{DS}

2.000/div (V)

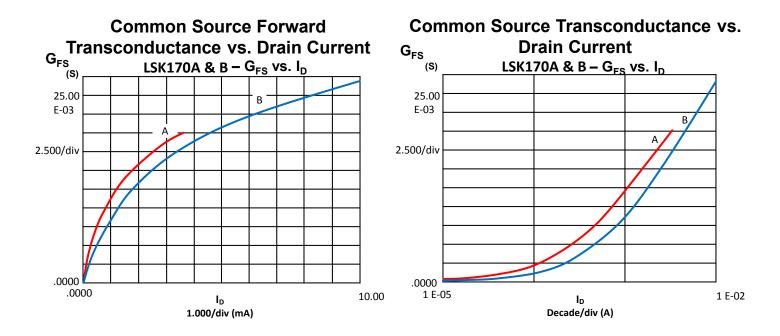
.0000

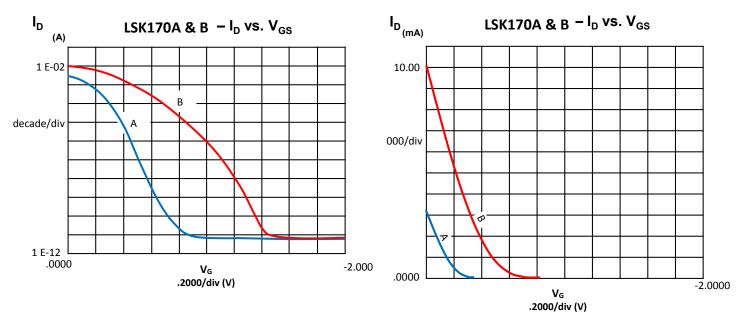

4.000

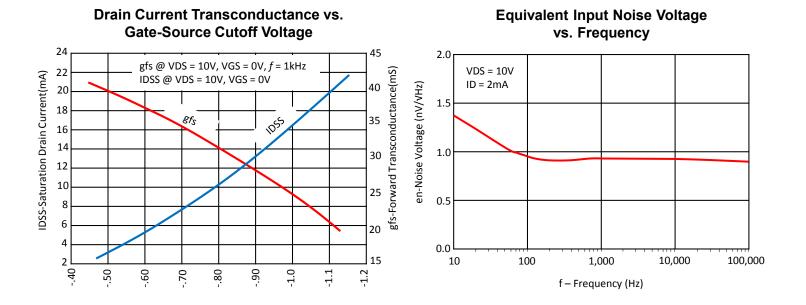
Output Conductance



24.00


LSK170 Series


Typical Characteristics Continued

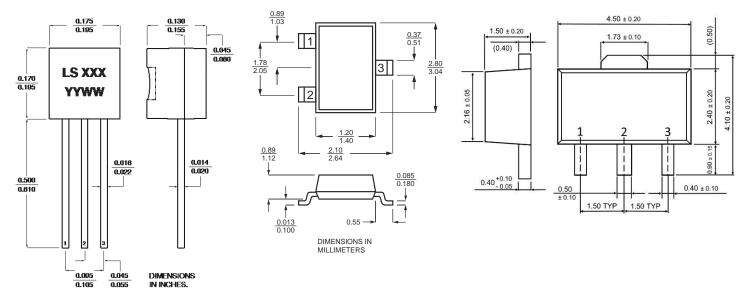

LSK170 Series

Typical Characteristics Continued

.2000/aiv (

LSK170 Series

Ordering Information


STANDARD PART CALL-OUT	CUSTOM PART CALL-OUT CUSTOM PARTS INCLUDE SEL + 4 DIGIT NUMERIC CODE)
LSK170A TO-92 3L RoHS	LSK170A TO-92 3L RoHS SELXXXX
LSK170B TO-92 3L RoHS	LSK170B TO-92 3L RoHS SELXXXX
LSK170C TO-92 3L RoHS	LSK170C TO-92 3L RoHS SELXXXX
LSK170D TO-92 3L RoHS	LSK170D TO-92 3L RoHS SELXXXX
LSK170A SOT-23 3L RoHS	LSK170A SOT-23 3L RoHS SELXXXX
LSK170B SOT-23 3L RoHS	LSK170B SOT-23 3L RoHS SELXXXX
LSK170C SOT-23 3L RoHS	LSK170C SOT-23 3L RoHS SELXXXX
LSK170D SOT-23 3L RoHS	LSK170D SOT-23 3L RoHS SELXXXX
LSK170A SOT-89 3L RoHS	LSK170A SOT-89 3L RoHS SELXXXX
LSK170B SOT-89 3L RoHS	LSK170B SOT-89 3L RoHS SELXXXX
LSK170C SOT-89 3L RoHS	LSK170C SOT-89 3L RoHS SELXXXX
LSK170D SOT-89 3L RoHS	LSK170D SOT-89 3L RoHS SELXXXX

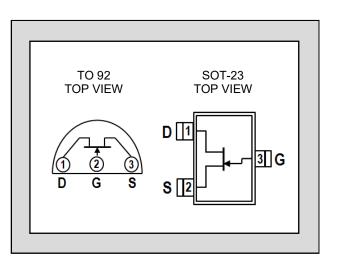
Package Dimensions

TO-92 3 Lead

SOT-23 3 Lead

SOT-89 3 Lead

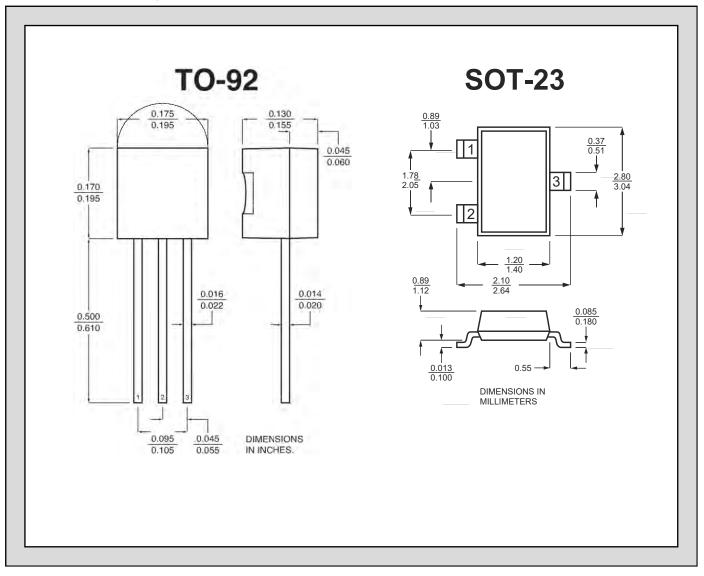
Notes:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse Test: PW ≤ 300µs, Duty Cycle ≤ 3%
- 3. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only.
- 4. When ordering include the full Linear Systems part number and package type. Linear Systems creates custom parts on a case by case basis. To learn whether Linear Systems can meet your requirements, please send your drawing along with a detailed description of the device specifications to <u>sales@linearsystems.com</u>. One of our qualified representatives will contact you.
- 5. All standard parts are RoHS compliant. Contact the factory for availability of non-RoHS parts.
- 6. Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.
- 7. Voltage specifications are not tested 100%, but guaranteed by lot sampling. Contact the factory if 100% test is required.

Over 30 Years of Quality Through Innovation

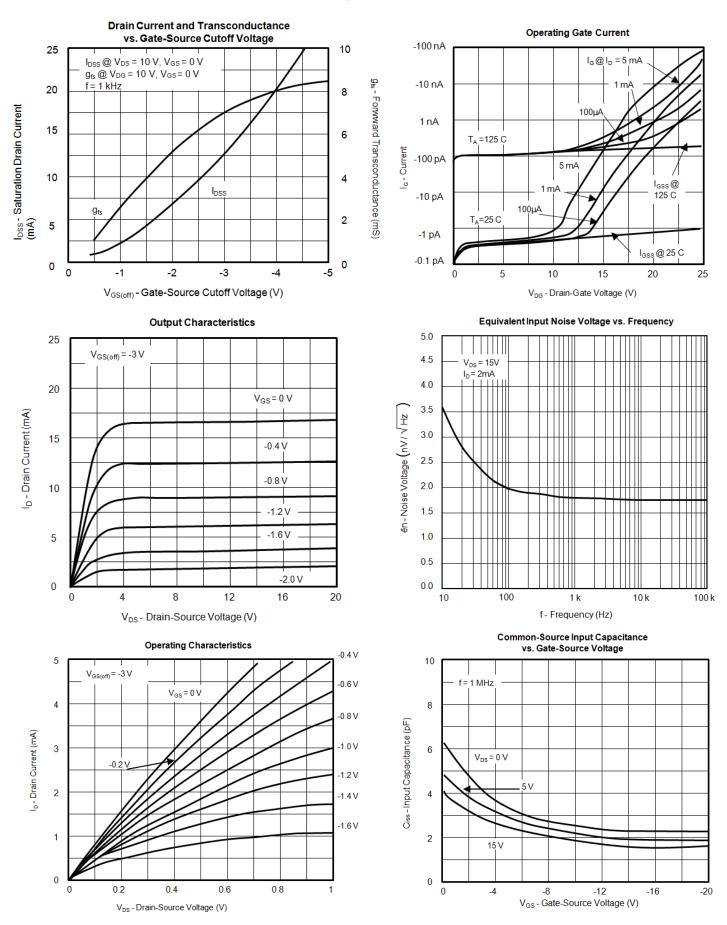
FEATURES	
ULTRA LOW NOISE	e _n = 1.8nV/√Hz
LOW INPUT CAPACITANCE	C _{ISS} = 4pF
ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)	
Maximum Temperatures	
Storage Temperature	-55 to +150°C
Junction Operating Temperature	-55 to +150°C
Maximum Power Dissipation	
Continuous Power Dissipation TA=25°C	300mW⁴
Maximum Currents	
Gate Forward Current	$I_{G(F)} = 10 \text{mA}$
Maximum Voltages	
Gate to Source	$V_{GSO} = 60V$
Gate to Drain	$V_{GDO} = 60V$

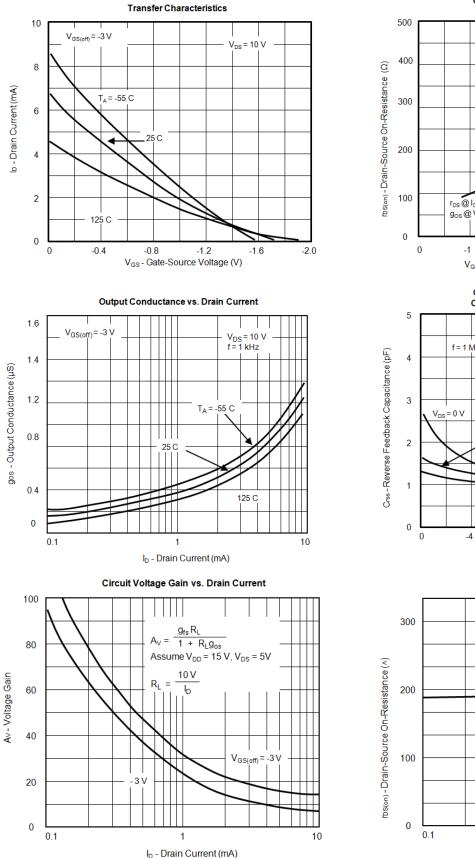
<u>LSK189</u>

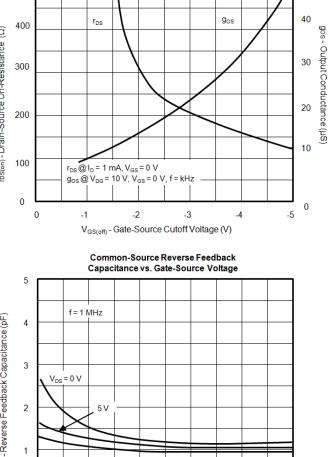

LOW NOISE, LOW CAPACITANCE SINGLE N-CHANNEL JFET

* For equivalent monolithic dual, see LSK489

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-60			V	V _{DS} = 0, I _D = -1nA
$V_{\text{GS}(\text{OFF})}$	Gate to Source Pinch-off Voltage	-1.5		-3.5	V	V _{DS} = 15V, I _D = 1nA
V _{GS}	Gate to Source Operating Voltage	-0.5		-3.5	V	V _{DS} = 15V, I _D = 500µA
IDSS ²	Drain to Source Saturation Current	2.5	5	15	mA	V _{DS} = 15V, V _{GS} = 0
lg	Cata On anoting Commant		-2	-25	pА	V _{DG} = 15V, I _D = 200µA
lg	Gate Operating Current		-0.8	-10	nA	TA=125°C
I _{GSS}	Gate to Source Leakage Current			-100	pА	V _{GS} = -15V
0		1500			μS	$V_{DS} = 15V, V_{GS} = 0, f = 1kHz$
G _{fs}	Full Conductance Transconductance		1500		μS	V _{DS} = 15V, I _D = 500µA
Gos	Full Output Conductance			40	μS	V _{DS} = 15V, V _{GS} = 0
Gos	Output Conductance		1.8	2.7	μS	V _{DS} = 15V, I _D = 200µA
NF	Noise Figure			0.5	dB	$V_{DS} = 15V, V_{GS} = 0, R_G = 10M\Omega, f = 100Hz, NBW = 6Hz$
en	Noise Voltage		1.8	2.0	nV/√Hz	V_{DS} = 15V, I_D = 2mA, f = 1kHz, NBW = 1Hz
en	Noise Voltage		2.8	3.5	nV/√Hz	V _{DS} = 15V, I _D = 2mA, <i>f</i> = 10Hz, NBW = 1Hz
CISS	Common Source Input Capacitance		4	8	pF	$V_{22} = 15V_{12} = 500uA_{2}f = 1MHz$
Crss	Common Source Reverse Transfer Cap.			3	pF	$V_{DS} = 15V, I_D = 500\mu A, f = 1MHz$


Standard Package Dimensions:




NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse Test: PW \leq 300µs, Duty Cycle \leq 3%.
- 3. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only.
- 4. Derate 2.8 mW °C above 25°C.

LSK189 Typical Characteristics

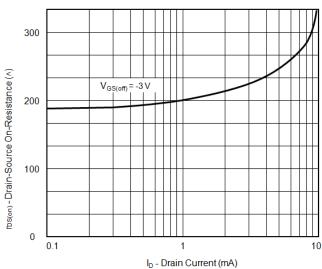
On-Resistance and Output Conductance

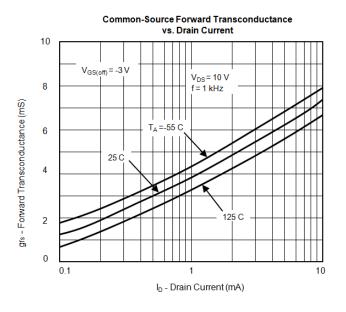
vs. Gate-Source Cutoff Voltage

50

V_{GS}- Gate-Source Voltage (V)

-12


-16


-20

-8

15 V

On-Resistance vs. Drain Current

J/SST201/2/4

Improved Standard Products[®]

High Gain, Single N-Channel JFET Amplifier

General Purpose, Low Noise, Low Cost, Single JFET

Absolute Maximum Ratings						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-65 to +150°C					
Junction Operating Temperature	-55 to +150°C					
Maximum Power Dissipation						
Continuous Power Dissipation @ +25°C	350mW					
Maximum Currents						
Gate Forward Current	I _{G(F)} = 10mA					
Maximum Voltages						
Gate to Source	$V_{GSS} = 40V$					
Gate to Drain	$V_{GDS} = 40V$					

Features

- Low Cutoff Voltage: J201 <1.5V
- High Input Impedance
- Very Low Noise
- High Gain: AV = 80 @ 20 µA
- Reverse Gate to Source and Drain Voltage ≥ -40V

Benefits

- Low Cost
- Excellent Low Power Supply Operation
- Power Supply: Down to 1.5V
- Low Signal Loss/System Error
- High System Sensitivity
- High Quality Low-Level Signal

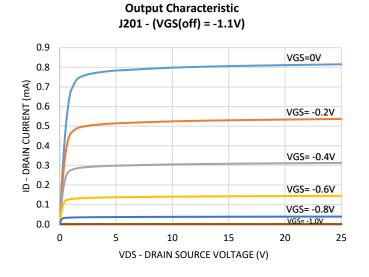
Applications

- High-Gain, Low Noise Amplifiers
- Low-Current, Low-Voltage **Battery-Powered Amplifiers**
- Infrared Detector Amplifiers
- Ultra-High Input Impedance Pre-Amplifiers

Description

J/SST201/2/4 is excellent for battery powered equipment and assembly and in die form for automated assembly.

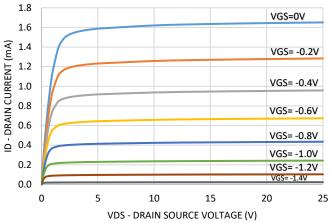
The J/SST201/2/4 series is a low cost direct replacement for low current amplifiers. The J series, TO-226 (TO-92) plastic Siliconix J/SST201/2/4 series. Features include low leakage, package, provides low cost, while the SST series, TO-236 (SOTvery low noise, low cutoff voltage (V_{GS(off)} ≤ 1.5V) and high Gain 23) package provides surface-mount capability. Both the J and (Ay = 80 V/V) for use with low-level power supplies. The SST series are available in tape-and-reel for automated


Electrical Characteristics @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source	J/SST201, 202	-40				I _G = -1μΑ, V _{DS} = 0.0V
	Breakdown Voltage	J/SST204	-25				
	Gate to Source Cutoff	J/SST201	-0.3		-1.5	V	
V _{GS(off)}	Voltage	J/SST202	-0.8		-4.0		V _{DS} = 15V, I _D = 10nA
		J/SST204	-0.2		2.0		
	Drain to Source	J/SST201	0.2		1.0		
IDSS	Saturation Current ²	J/SST202	0.9		4.5	mA	$V_{DS} = 15V, V_{GS} = 0.0V$
	outdration outrent	J/SST204	0.2		3.0		
lgss	Gate Reverse Current				-100		V _{GS} = -20V, V _{DS} = 0.0V
lg	Gate Operating Current			-2		pА	$V_{DG} = 10V, I_D = 0.1mA$
I _{D(off)}	Drain Cutoff Current			2			V _{DS} = 15V, V _{GS} = 5.0V

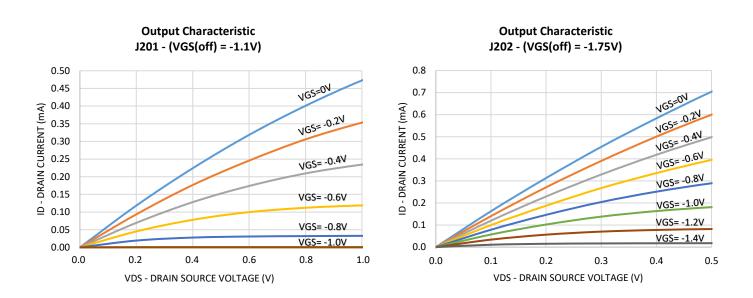
J/SST201 Series

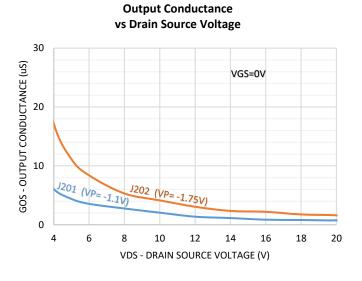
Electrical Characteristics @ 25 C (unless otherwise stated) Continued									
SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNITS	CONDITIONS		
g fs	Forward	J/SST201, 204	0.5			mS	V _{DS} = 15V, V _{GS} = 0.0V, <i>f</i> = 1kHz		
U	Transconductance	J/SST202	1.0						
Ciss	Input Capacitance			4.5		pF	V _{DS} = 15V, V _{GS} = 0.0V, <i>f</i> = 1MHz		
Crss	Reverse Transfer Capacitance			1.3					
en	Noise Voltage			4.0		nV/√Hz	V _{DS} = 10V, V _{GS} = 0.0V, <i>f</i> = 1kHz		

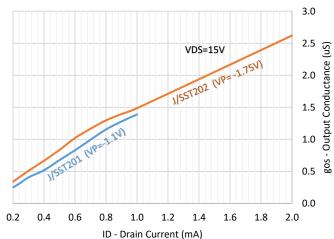

Electrical Characteristics @ 25 °C (unless otherwise stated) Continued

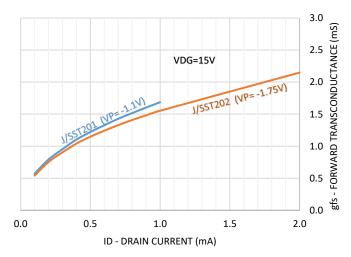
Output Characteristic

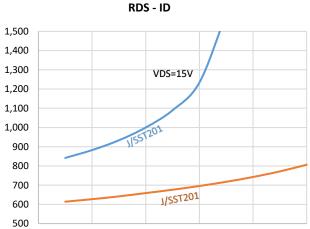
Typical Characteristics


Output Characteristic J202 - (VGS(off) = -1.75V)


J201 - (VGS(off) = -1.1V) J202 - (VGS(off) = -1.75V) 0.9 1.8 VGS=0V 0.8 1.6 ID - DRAIN CURRENT (mA) ID - DRAIN CURRENT (mA) 0.7 1.4 1.2 0.6 VGS= -0.2V 0.5 1.0 0.8 0.4 VGS= -0.4V 0.6 0.3 0.2 0.4 VGS= -0.6V 0.1 0.2 VGS= -0.8V VGS= -1 0V 0.0 0.0 0 1 2 3 4 5 0 1 2 3 4 VDS - DRAIN SOURCE VOLTAGE (V) VDS - DRAIN SOURCE VOLTAGE (V)


Output Characteristic


Operating Gate Current Transfer Characteristics 4.0 1.8 1.6 3.5 VDS=25V ID= 1mA 3.0 155170+ IG-Current (pA) 2.5 2.0 1.5 1.0 0.5 0.2 0.0 0.0 0 0 -0.5 -1 -1.5 -2 5 10 15 20 25 VDS - DRAIN SOURCE VOLTAGE (V) VGS - GATE SOURCE VOLTAGE (V)



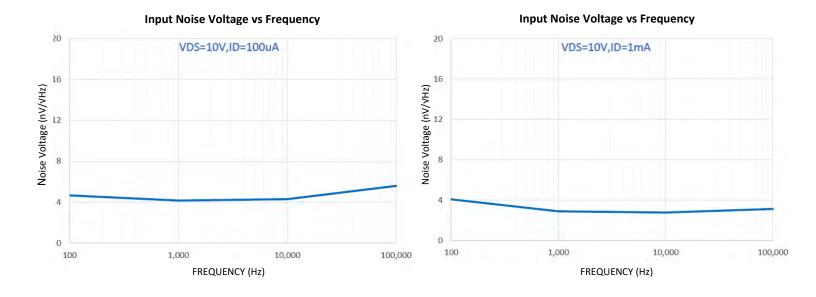
Output Conductance vs. Drain Current

Forward Transconductance vs. Drain Current

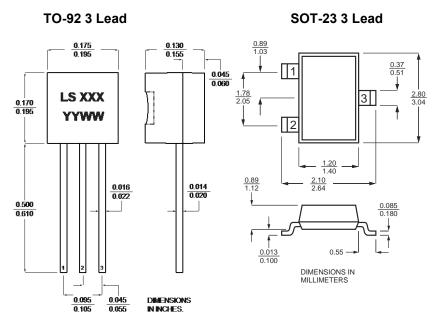
0.4

0.6

ID DRAIN CURRENT (mA)


RDS(ON) - DRAIN SOURCE ON-RESISTANCE (Ω)

0.0


0.2

0.8

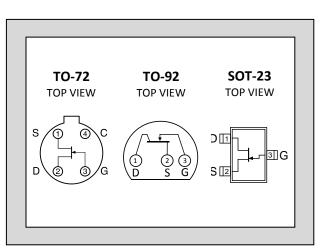
1.0

Package Dimensions

Ordering Information

STANDARD PART CALL-OUT
J201 TO-92 3L RoHS
J202 TO-92 3L RoHS
J204 TO-92 3L RoHS
SST201 SOT-23 3L RoHS
SST202 SOT-23 3L RoHS
SST204 SOT-23 3L RoHS
CUSTOM PART CALL-OUT
(CUSTOM PARTS INCLUDE SEL + 4 DIGIT NUMERIC CODE)
J201 TO-92 3L RoHS SELXXXX
J202 TO-92 3L RoHS SELXXXX
J204 TO-92 3L RoHS SELXXXX
SST201 SOT-23 3L RoHS SELXXXX
SST202 SOT-23 3L RoHS SELXXXX
SST204 SOT-23 3L RoHS SELXXXX

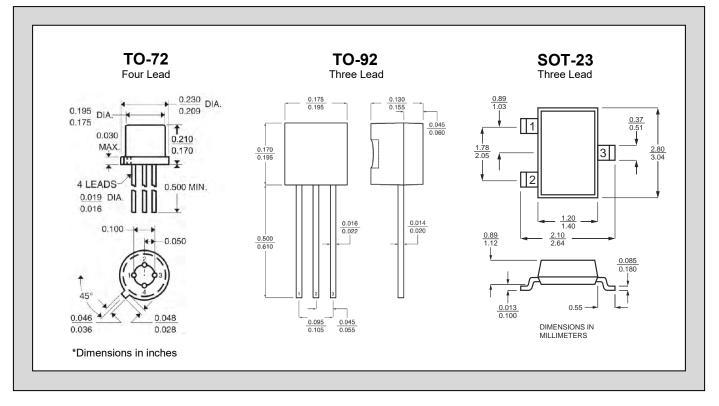
Notes


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- Disolate initiality and sharp and initially class and sharp of the state of the st
- When ordering include the full Linear Systems part number and package type. Linear Systems creates custom parts on a case by case basis. To learn whether Linear 4. Systems can meet your requirements, please send your drawing along with a detailed description of the device specifications to sales@linearsystems.com. One of our qualified representatives will contact you.
- 5. All standard parts are RoHS compliant. Contact the factory for availability of non-RoHS parts.
- 6. Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Over Three Decades of Quality Through Innovation

<u>LS846</u>

LOW NOISE LOW LEAKAGE SINGLE N-CHANNEL JFET AMPLIFIER

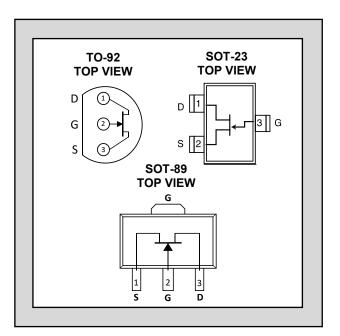

FEATURES	
ULTRA LOW NOISE	e _n = 3nV/√Hz
LOW INPUT CAPACITANCE	C _{ISS} = 4pF
ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)	
Maximum Temperatures	
Storage Temperature	-55 to +150°C
Operating Junction Temperature	-55 to +150°C
Maximum Power Dissipation	
Continuous Power Dissipation TA=25°C	300mW ³
Maximum Currents	
Gate Forward Current	$I_{G(F)} = 10 \text{mA}$
Maximum Voltages	
Gate to Source	$V_{GSO} = 60V$
Gate to Drain	$V_{GDO} = 60V$

^{*}For equivalent Monolithic Dual, see LS843 Family

SYMBOL	CHARACTERISTIC ²	MIN	TYP	MAX	UNITS	CONDITIONS	
BV _{GSS}	Gate to Source Breakdown Voltage	-60			V	V _{DS} = 0, I _D = 1nA	
$V_{\text{GS}(\text{OFF})}$	Gate to Source Pinch-off Voltage	-1		-3.5	V	V _{DS} = 15V, I _D = 1nA	
Vgs	Gate to Source Operating Voltage	-0.5		-3.5	V	V _{DS} = 15V, I _D = 500µA	
IDSS	Drain to Source Saturation Current	1.5	5	15	mA	V _{DS} = 15V, V _{GS} = 0	
l _G	Gate Operating Current		-15	-50	pА	$V_{DG} = 15V, I_D = 500\mu A$	
lg	Gate Operating Current Reduced VDG		-5	-30	pА	V _{DG} = 3V, I _D = 500µA	
I _{GSS}	Gate to Source Leakage Current			-100	pА	V _{GS} = 15V, V _{DS} = 0	
G _{fss}	Full Conductance Transconductance	1500			μS	V_{DS} = 15V, V_{GS} = 0, <i>f</i> = 1kHz	
G _{fs}	Typical Operation Transconductance	1000	1500		μS	V _{DS} = 15V, I _D = 200µA	
Goss	Full Output Conductance			40	μS	V _{DS} = 15V, V _{GS} = 0	
Gos	Typical Operation Output Conductance		2.0	2.70	μS	V _{DS} = 15V, I _D = 200µA	
NF	Noise Figure			0.5	dB	$V_{DS} = 15V, V_{GS} = 0, R_G = 10M\Omega, f = 100Hz, NBW = 6Hz$	
en	Noise Voltage		3	7	nV/√Hz	V _{DS} = 15V, I _D = 500µA, <i>f</i> = 1kHz, NBW = 1Hz	
en	Noise Voltage			11	nV/√Hz	V _{DS} = 15V, I _D = 500µA, <i>f</i> = 10Hz, NBW = 1Hz	
Ciss	Common Source Input Capacitance		4	8	pF	V _{DS} = 15V, I _D = 500µA, <i>f</i> = 1MHz	
Crss	Common Source Reverse Transfer Cap.			3	pF		

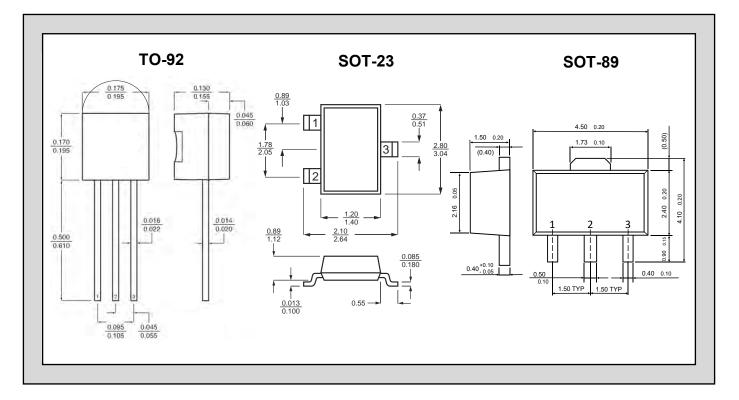
STANDARD PACKAGE DIMENSIONS:

NOTES:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. All MIN/TYP/MAX limits are absolute numbers. Negative signs indicate negative electrical polarity only.
- 3. Derate 2.8mW/°C above 25°C.

Quality Through Innovation Since 1987

FEATURESss						
ULTRA LOW NOISE (f=1kHz)	$e_n = 1.9 NV / \sqrt{HZ}$					
HIGH BREAKDOWN VOLTAGE	BV _{GSS} =40V min					
HIGH GAIN	G _{fs} =22mS (typ)					
HIGH INPUT IMPEDENCE	I _G = -500pA max					
LOW CAPACITANCE	20pF (typ)					
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-55 to +150 °C					
Operating Junction Temperature	-55 to +135 °C					
Maximum Power Dissipation						
Continuous Power Dissipation@+25°C	400mW					
Maximum Currents						
Gate Forward Current	I _{G(F)} = 10mA					
Maximum Voltages						
Gate to Source	V _{GS} = 40V					
Gate to Drain	V_{GD} = 40V					


LSK170X-1

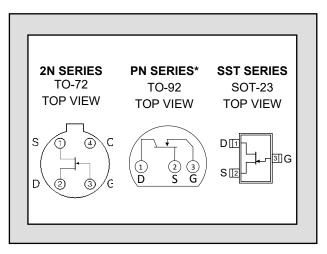
ULTRA LOW NOISE, HIGH IDSS SINGLE N-CHANNEL JFET AMPLIFIER

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC		TYP	MAX	UNITS	CONDITIONS	
BV _{GSS}	Gate to Source Breakdown Voltage	-40			V	V _{DS} = 0, I _D = 100µA	
$V_{GS(OFF)}$	Gate to Source Pinch-off Voltage	-0.2		-2	V	V _{DS} = 10V, I _D = 1nA	
V _{GS}	Gate to Source Operating Voltage		0.5		V	V _{DS} = 10V, I _D = 1mA	
IDSS2	Drain to Source Saturation Current	20		50	mA	V _{DS} = 10V, V _{GS} = 0	
lg	Gate Operating Current			-0.5	nA	$V_{DG} = 10V, I_{D} = 1mA$	
Igss	Gate to Source Leakage Current			-1	nA	$V_{GS} = -10V, V_{DS} = 0$	
G _{fS}	Full Conduction Transconductance		22		mS	V_{GD} = 10V, V_{GS} = 0, f = 1kHz	
G _{fS}	Typical Conduction Transconductance		10		mS	V_{DG} = 15V, I_D = 1mA	
en	Noise Voltage		1.9		nV/√Hz	$V_{DS} = 10V$, $I_D = 2mA$, $f = 1kHz$, NBW=1Hz	
en	Noise Voltage		4.0		nV/√Hz	V _{DS} = 10V, I _D = 2mA, <i>f</i> = 10 Hz, NBW=1Hz	
CISS	Common Source Input Capacitance		20		pF	$V_{DS} = 15V, I_D = 100\mu A, f = 1MHz$	
Crss	Common Source Reverse Transfer Cap.		5		pF		

NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse Test: PW \leq 300µs, Duty Cycle \leq 3%


3. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only. Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Improved Standard Products[®]

FEATURES						
Replacement For SILICONIX 2N/SST4416 & 2N4416A						
VERY LOW NOISE FIGURE (400 MHz)	4 dB					
EXCEPTIONAL GAIN (400 MHz)	10 dB					
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-55 to +150 °C					
Operating Junction Temperature	-55 to +135 °C					
Maximum Power Dissipation						
Continuous Power Dissipation	300mW					
Maximum Currents						
Gate Current	10mA					
Maximum Voltages						
Gate to Drain or Gate to Source 2N4416	-30V					
Gate to Drain or Gate to Source 2N4416A	-35V					

2N/PN/SST4416 & 4416A

N-CHANNEL JFET HIGH FREQUENCY AMPLIFIER

*Optional Package for 2N4416

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

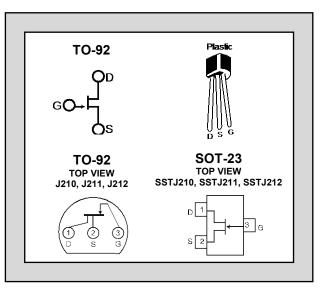
SYMBOL					TYP	MAX	UNITS	CONDITIONS
OTMOOL				MIN				CONDITIONS
BV _{GSS}	Gate to Source	2N/PN/SST4416		-30			V	I_G = -1µA, V_{DS} = 0V
DVGSS	Breakdown Voltage	2N4416A		-35				
N	Gate to Source Cutoff Voltage	2N/PN/SST4416				-6		
V _{GS(off)}		2N	4416A	-2.5		-6		V _{DS} = 15V, I _D = 1nA
I _{DSS}	Gate to Source Saturation Current			5		15	mA	V _{DS} = 15V, V _{GS} = 0V
	Gate Leakage Current 2N PN/SST				-0.1	nA	V _{GS} = -20V, V _{DS} = 0V	
Igss					-1.0		V _{GS} = -15V, V _{DS} = 0V	
g fs	Forward Transconductance			4000		7500		
gos	Output Conductance					100	μS	$V_{DS} = 15V, V_{GS} = 0V, f = 1kHz$
Ciss	Input Capacitance ²					0.8		
Crss	Reverse Transfer Capacitance ²					4	pF	V _{DS} = 15V, V _{GS} = 0V, <i>f</i> = 1MHz
Coss	Output Capacitance ²					2		
en	Equivalent Input Noise Voltage				6		nV/√Hz	$V_{DS} = 10V, V_{GS} = 0V, f = 1kHz$

				,					
SYMPOL	CHARACTERISTIC	100 MHz		400 MHz			CONDITIONS		
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNITS	CONDITIONS		
giss	Input Conductance ²		100		1000				
b _{iss}	Input Susceptance ²		2500		10000				
g _{oss}	Output Conductance ²		75		100	μS	V_{DS} = 15V, V_{GS} = 0V		
b _{oss}	Output Susceptance ²		1000		4000				
G _{fs}	Forward Transconductance ²			4000					
G _{ps}	Power Gain ²	18		10		٩D	V _{DS} = 15V, I _D = 5mA		
NF	Noise Figure ²		2		4	dB	V_{DS} = 15V, I_D = 5mA, R_G = 1k Ω		

HIGH FREQUENCY ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

NOTES:

1. Absolute maximum ratings are limiting values above which serviceability may be impaired.


2. Not production tested, guaranteed by design.

Improved Standard Products[®]

FEATURES								
HIGH GAIN gfs=7000µmho MINIMUM (J211, J212)								
HIGH INPUT IMPEDENCE IGSS= 100pA MAXIMUM								
LOW CAPACITANCE Ciss= 5pF TYPICAL	LOW CAPACITANCE CISS= 5pF TYPICAL							
ABSOLUTE MAXIMUM RATINGS								
@ 25 °C (unless otherwise stated)								
Gate-Drain or Gate-Source Voltage	-25V							
Gate Current	10mA							
Total Device Dissipation @25°C Ambient (Derate 3.27 mW/°C)	360mW							
Operating Temperature Range	-55 to +150 °C							

SST/J210, 211 & 212

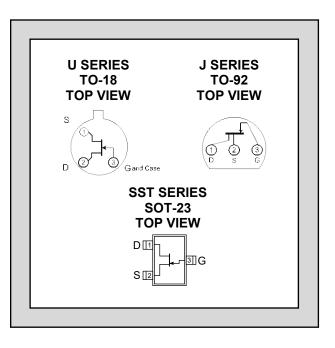
LOW NOISE N-CHANNEL JFET GENERAL PURPOSE AMPLIFIER

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTICS	SS	STJ21	0	S	STJ2	TJ211 SSTJ212		UNITS	CONDITIONS			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
I _{GSS}	Gate Reverse Current		1	-100	-	1	-100			-100	pА	V_{DS} = 0, V_{GS} = -15V	(NOTE 1)
V _{GS(off)}	Gate-Source Cutoff Voltage	-1		-3	-2.5		-4.5	-4		-6	V	V_{DS} = 15V, I_{D} = 1	nA
BV _{GSS}	Gate-Source Breakdown Voltage	-25			-25			-25			v	$V_{DS} = 0, I_G = -1\mu$	A
I _{DSS}	Drain Saturation Current	2		15	7		20	15		40	mA	V_{DS} = 15V, V_{GS} =0 (I	NOTE 2)
lg	Gate Current		-10			-10			-10		pА	V_{DS} = 10V, I_D =1mA	(NOTE 1)
g fs	Common-Source Forward Transconductance	4,000		12,000	6,000	-	12,000	7,000		12,000			6-4141-
gos	Common-Source Output Conductance			150			200			200	µmho	V _{DS} = 15V, V _{GS} =0	f=1kHz
C _{ISS}	Common-Source Input Capacitance		4	-	-	4			4		- 6		f=1MHz
Crss	Common-Source Reverse Transfer Capacitance	-	1	-	-	1			1		pF		
en	Equivalent Short-Circuit Input Noise Voltage	-	10			10			10		nV√Hz		f=1kHz

NOTES:

1. Approximately doubles for every $10^{\circ}C$ increase in T_A.


2. Pulse test duration = 2ms.

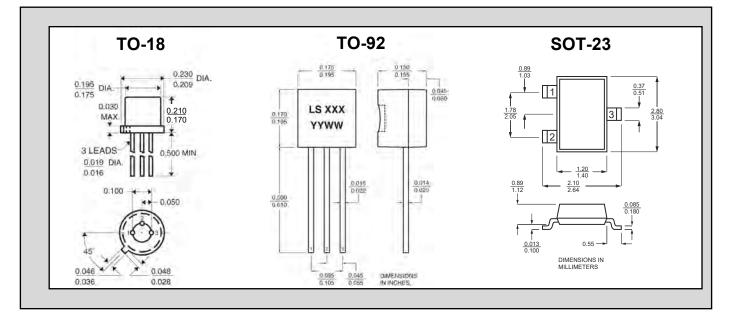
Improved Standard Products[®]

FEATURES							
Direct Replacement For SILICONIX U/J/SST308 SERIES							
OUTSTANDING HIGH FREQUENCY GAIN	G _{pg} = 11.5dB						
LOW HIGH FREQUENCY NOISE	NF = 2.7dB						
ABSOLUTE MAXIMUM RATINGS ¹							
@ 25 °C (unless otherwise stated)							
Maximum Temperatures							
Storage Temperature	-55 to 150°C						
Junction Operating Temperature	-55 to 150°C						
Maximum Power Dissipation							
Continuous Power Dissipation (J/SST) ⁴	350mW						
Continuous Power Dissipation (U) ⁵	500mW						
Maximum Currents							
Gate Current (J/SST)	10mA						
Gate Current (U)	20mA						
Maximum Voltages							
Gate to Drain	-25V						
Gate to Source	-25V						

U/J/SST308 SERIES

SINGLE N-CHANNEL, HIGH FREQUENCY JFET AMPLIFIER

COMMON ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)


SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNIT	CONDITIONS		
BV _{GSS}	Gate to Source Breakdown Voltage		-25			V	$I_G = -1\mu A$, $V_{DS} = 0V$		
$V_{\text{GS}(F)}$	Gate to Source Forward Vo	oltage	0.7		1.15	v	$I_{G} = 10 \text{mA}, V_{DS} = 0 \text{V}$		
lg	Gate Operating Current			-15		pА	V _{DG} = 9V, I _D = 10mA		
r DS(on)	Drain to Source On Resistance			35		Ω	V_{GS} = 0V, I_D = 1mA		
en	Equivalent Noise Voltage			6		nV/√Hz	V _{DS} = 10V, I _D = 10mA, <i>f</i> = 100Hz		
NF	Noiso Eiguro	<i>f</i> = 105MHz		1.5					
INF	Noise Figure	<i>f</i> = 450MHz		2.7		dB			
G	Power Gain ²	f = 105MHz		16		uБ			
G _{pg}		<i>f</i> = 450MHz		11.5			V _{DS} = 10V, I _D = 10mA		
<i>a</i> ,	Forward	<i>f</i> = 105MHz		14					
g fg	Transconductance	<i>f</i> = 450MHz		13		mS			
g _{og}	Output Conductance	f = 105MHz		0.16					
309		f = 450MHz		0.55					
IGSS	Gate Reverse Current				-1	nA	$V_{GS} = -15V, V_{DS} = 0V$		

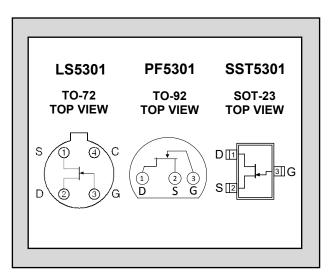
SPECIFIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

SYM.	M. CHARACTERISTIC		J/SS	J/SST308		J/SST309		T310		CONDITIONS	
5 T WI.	CHARACTERISTIC	TYP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS	
V _{GS(off)}	Gate to Source Cutoff Voltage		-1	-6.5	-1	-4	-2	-6.5	V	V _{DS} = 10V, I _D = 1nA	
IDSS	Source to Drain Saturation Current ³		12	75	12	30	24	75	mA	V_{DS} = 10V, V_{GS} = 0V	
Ciss	Input Capacitance	4							pF	V _{DS} = 10V, V _{GS} = -10V	
Crss	Reverse Transfer Capacitance	1.9							ρг	f = 1 MHz	
g _{fs}	Forward Transconductance	14	8		10		8		mS	V _{DS} = 10V, I _D = 10mA	
gos	Output Conductance	110		250		250		250	μS	<i>f</i> = 1kHz	

SPECIFIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

SYM.	YM. CHARACTERISTIC		U308		U309		U310		UNIT	CONDITIONS	
5 T IVI.	CHARACTERISTIC	TYP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS	
V _{GS(off)}	Gate to Source Cutoff Voltage		-1	-6.5	-1	-4	-2.5	-6.5	V	V _{DS} = 10V, I _D = 1nA	
IDSS	Source to Drain Saturation Current ³		12	75	12	30	24	75	mA	V_{DS} = 10V, V_{GS} = 0V	
Ciss	Input Capacitance	4		5		5		5	pF	V _{DS} = 10V, V _{GS} = -10V	
Crss	Reverse Transfer Capacitance	1.9		2.5		2.5		2.5	ρг	f = 1 MHz	
g _{fs}	Forward Transconductance	14	10		10		10		mS	V _{DS} = 10V, I _D = 10mA	
g _{os}	Output Conductance	110		250		250		250	μS	f = 1kHz	

NOTES:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Measured at optimum input noise match
- 3. Pulse test: PW \leq 300µs, Duty Cycle \leq 3%
- 4. Derate 2.8mW/°C above 25°C
- 5. Derate 4mW/°C above 25°C

Improved Standard Products[®]

Features							
Replacement for LF5301, PF5301							
High Input Impedance	I _G >1 GΩ						
High Gain	g _{fs} > 70 μS						
Absolute Maximum Ratings ¹							
@ 25 °C (unless otherwise stated)							
Maximum Temperatures (°C)							
Storage Temperature	-55 to 150°C						
Operating Junction Temperature	-55 to 135°C						
Maximum Power Dissipation @TA = 25°C	300mW						
Derate LS5301	2.0mW/°C						
Derate PF & SST5301	2.8mW/°C						
Maximum Forward Current	50mA						
Maximum Gate to Drain Voltage	-30V						
Maximum Gate to Source Voltage	-30V						

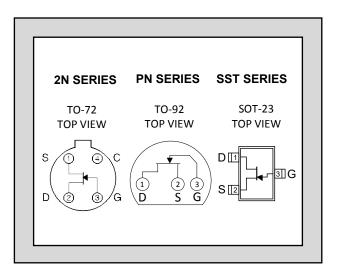
LS5301/PF5301/ SST5301

VERY HIGH INPUT IMPEDANCE N-CHANNEL JFET AMPLIFIER

Static Electrical Characteristics @ TA = 25°C (unless otherwise stated)

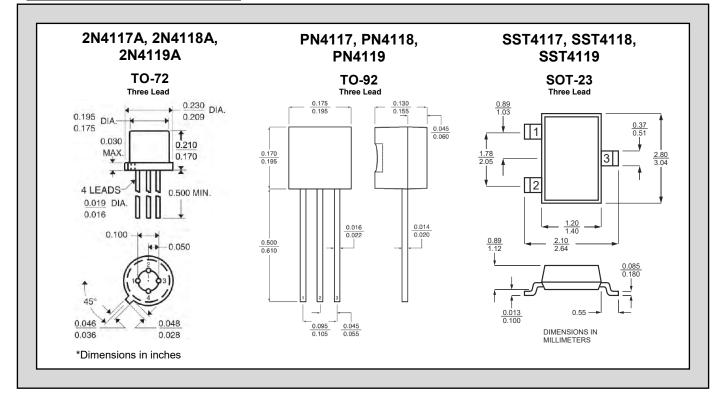
Symbol	Characteristic			TYP	Max	Unit	Conditions	
BV _{GSS}	Gate to Source Breakdown Voltage		-30			V	$V_{DS} = 0V, I_{D} = -1\mu A$	
$V_{\text{GS(off)}}$	Gate to Source Cutoff Voltage	;	-0.6		-3.0	v	V _{DS} = 10V, I _D = 1nA	
		LS5301			-1	рА		
I _{GSS}	Gate Leakage Current	PF5301			-5		V_{DS} = 15V, V_{GS} = 0V	
	SST5301 -10 PA	рА						
lg	Gate Operating Current			-0.04			V _{DG} = 6V, I _D = 5µA	
I _{DSS}	Drain to Source Saturation Cu	ırrent	30		500	μA	V_{DS} = 10V, V_{GS} = 0V	
g fs	Forward Transconductance		70		500	μS	V _{DS} = 10V, V _{GS} = 0V, <i>f</i> = 1kHz	
Ciss	Input Capacitance				3	~F		
Crss	Reverse Transfer Capacitance				1.5	pF	$V_{DS} = 10V, V_{GS} = 0V, f = 1MHz$	
en	Equivalent Noise Voltage			45	150	nV/√Hz	V _{DG} = 10V, I _D = 50µA, <i>f</i> = 100Hz	

NOTES:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Derate PF series 2.8mW/° C when TA>25° C. Derate LS series 2.0mW°C when TA>25° C
- 3. All MIN/TYP/MAX limits are absolute numbers. Negative signs indicated electrical polarity only.

Improved Standard Products[®]

FEATURES								
LOW POWER	(2N4117A)							
MINIMUM CIRCUIT LOADING	I _{GSS} <1 pA (2	N4117A Series)						
ABSOLUTE MAXIMUM RATINGS (NOTE 3)								
@ 25°C (unless otherwise noted)								
Gate-Source or Gate-Drain Volta	-40V							
Gate-Current		50mA						
Total Device Dissipation								
(Derate 2mW/ºC above 25ºC)		300mW						
Storage Temperature Range		-55°C to+150°C						
Lead Temperature								
(1/16" from case for 10 seconds)		300°C						


<u>2N/PN/SST 4117,</u> <u>4118, 4119</u>

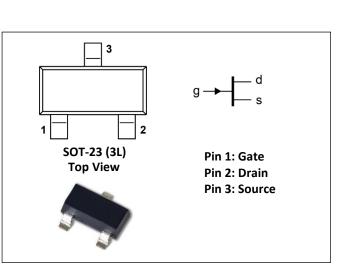
ULTRA-HIGH INPUT IMPEDANCE N-CHANNEL JFET AMPLIFIER

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

		41	117	4	118	41	119			
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	CONDITION	IS
BV _{GSS}	Gate-Source Breakdown Voltage	-40		-40		-40		v	I _G =-1µA V _{DS} =0	
V _{GS(off)}	Gate-Source Cutoff Voltage	-0.6	-1.8	-1	-3	-2	-6		V _{DS} =10V I _D =1nA	١
IDSS	Saturation Drain Current (<u>NOTE 2</u>)	0.03	0.60	0.08	0.60	0.20	0.80	mA	V _{DS} =10V V _{GS} =0	
	Gate Reverse Current		-1		-1		-1	pA nA	V _{GS} =-20V V _{DS} =0	
1	2N4117A, 2N4118A, 2N4119A		-2.5		-2.5		-2.5			150°C
I _{GSS}	PN4117, PN4118, PN4119	-	-10		-10		-10	pА		
	SST4117, SST4118, SST4119		-25		-25		-25	nA	V _{GS} =-10V V _{DS} =0	150°C
g fs	Common-Source Forward Transconductance	70	450	80	650	100	700			f=1kHz
gos	Common-Source Output Conductance		3		5		10	μS	V _{DS} =10V V _{GS} =0	
Ciss	Common-Source Input Capacitance (NOTE 4)		3		3		3		VDS - IUV VGS-U	
C _{rss}	Common-Source Reverse Transfer Capacitance (<u>NOTE 4)</u>		1.5		1.5		1.5	pF		f=1MHz

NOTES:

- 1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.
- 2. This parameter is measured during a 2 ms interval 100 ms after power is applied. (Not a JEDEC condition.)
- 3. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 4. Not production tested, guaranteed by design.



Improved Standard Products[®]

High Gain, Single N-Channel JFET Amplifier

General Purpose, Low-Noise, Low-Cost, Single N-Channel JFET, Replacement for the BF510

Absolute Maximum Ratings								
@ 25 °C (unless otherwise stated)								
Maximum Temperatures								
Storage Temperature	-65 to +150°C							
Junction Operating Temperature	-55 to +150°C							
Maximum Power Dissipation								
Continuous Power Dissipation @ +25°C	350mW							
Maximum Currents								
Gate Forward Current	$I_{G(F)} = 10 \text{mA}$							
Maximum Voltages								
Gate to Source	$V_{GSS} = 30V$							
Gate to Drain	$V_{GDS} = 30V$							

Features

- Low Cutoff Voltage: <2.5V
- High Input Impedance •
- Very Low Noise ٠
- High Gain: AV = 80 @ 20 µA
- Reverse Gate to Source and Drain Voltage ≥ -30V

Benefits

- Low Cost
- Excellent Low Power Supply Operation
- Power Supply: Down to 2.5V
- Low Signal Loss/System Error
- · High System Sensitivity
- High Quality Low-Level Signal

Applications

- High-Gain, Low Noise Amplifiers
- Low-Current, Low-Voltage
- **Battery-Powered Amplifiers** •
- Infrared Detector Amplifiers
- Ultra-High Input Impedance Pre-Amplifiers

Description

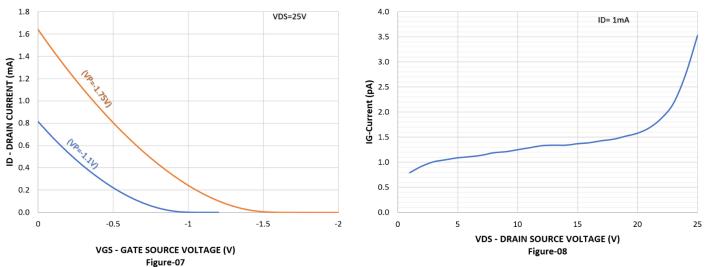

supplies. The LSBF510 is excellent for battery powered

The LSBF510 is a low-cost N-Channel JFET. Features include equipment and low current amplifiers. The TO-236 (SOT-23) low leakage, very low noise, low cutoff voltage (V_{GS(off)} ≤ 2.5V) package provides surface-mount capability. The LSBF510 is and high Gain (Av = 80 V/V) for use with low-level power available in tape-and-reel for automated assembly and in die form for automated assembly.

Electrical Characteristics @ 25 °C (unless otherwise stated)

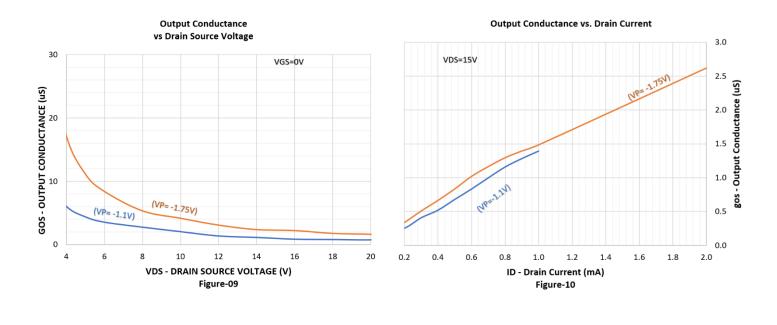
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-30			V	$I_G = -1\mu A$, $V_{DS} = 0.0V$
V _{GS(off)}	Gate to Source Cutoff Voltage	-0.3		-2.5		V _{DS} = 15V, I _D = 10nA
IDSS	Drain to Source Saturation Current ²	0.2		3.0	mA	$V_{DS} = 15V, V_{GS} = 0.0V$
I _{GSS}	Gate Reverse Current			-200		$V_{GS} = -20V, V_{DS} = 0.0V$
lg	Gate Operating Current		-2		pА	$V_{DG} = 10V, I_D = 0.1mA$
I _{D(off)}	Drain Cutoff Current		2			$V_{DS} = 15V, V_{GS} = 5.0V$
g fs	Forward Transconductance	0.5			mS	$V_{DS} = 15V, V_{GS} = 0.0V, f = 1kHz$
Ciss	Input Capacitance			4.5	pF	$V_{DS} = 15V, V_{GS} = 0.0V, f = 1MHz$
Crss	Reverse Transfer Capacitance		1.3			
en	Noise Voltage		3.0		nV/√Hz	$V_{DS} = 10V, I_D = 2mA, f = 1kHz$

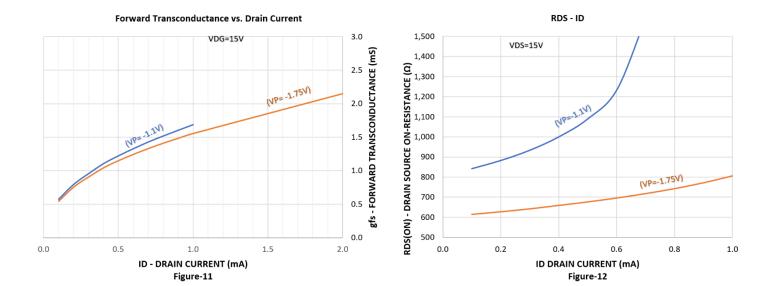
High Gain, Single N-Channel JFET Amplifier



Typical Characteristics

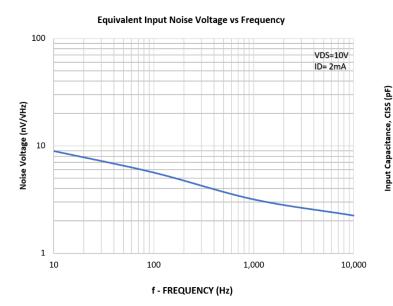
High Gain, Single N-Channel JFET Amplifier

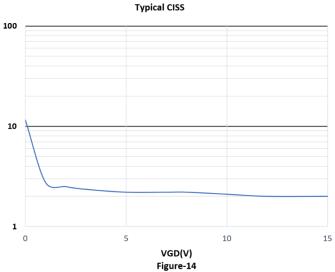

Typical Characteristics Continued

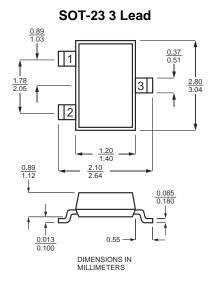


LSBF510

High Gain, Single N-Channel JFET Amplifier


Typical Characteristics Continued



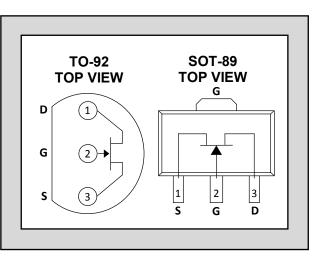

High Gain, Single N-Channel JFET Amplifier

Package Dimensions

Ordering Information

STANDARD PART CALL-OUT
LSBF510 SOT-23 3L RoHS
CUSTOM PART CALL-OUT
(CUSTOM PARTS INCLUDE SEL + 4 DIGIT NUMERIC CODE)
LSBF510 SOT-23 3L RoHS SELXXXX

Notes

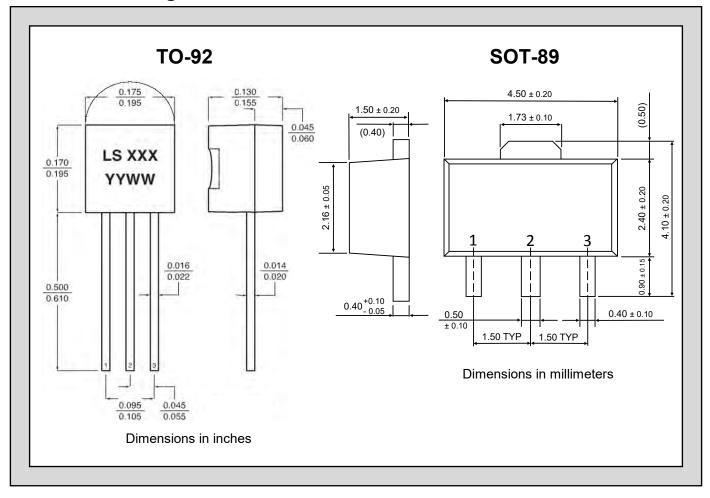

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- Pulse Test: PW ≤ 300µs, Duty Cycle ≤ 3%
- 3. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only.
- 4. When ordering include the full Linear Systems part number and package type. Linear Systems creates custom parts on a case by case basis. To learn whether Linear Systems can meet your requirements, please send your drawing along with a detailed description of the device specifications to <u>sales@linearsystems.com</u>. One of our qualified representatives will contact you.
- 5. All standard parts are RoHS compliant. Contact the factory for availability of non-RoHS parts.
- 6. Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Over 30 Years of Quality Through Innovation

FEATURES					
HIGH BREAKDOWN VOLTAGE	BV _{GSS} =40V max				
HIGH GAIN	G _{fs} =22mS (typ)				
HIGH INPUT IMPEDENCE	I _G = -500pA max				
LOW CAPACITANCE	20pF (typ)				
ABSOLUTE MAXIMUM RATINGS ¹					
TA = 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-55 to +150 °C				
Operating Junction Temperature	-55 to +135 °C				
Maximum Power Dissipation					
Continuous Power Dissipation (TO-92)	400mW ⁴				
Continuous Power Dissipation (SOT-89)	1.4W ^{5, 6}				
Maximum Currents					
Gate Forward Current	I _{G(F)} = 10mA				
Maximum Voltages					
Gate to Source	$V_{GS} = 40V$				
Gate to Drain	$V_{GD} = 40V$				

LS190

GENERAL PURPOSE SINGLE N-CHANNEL JFET AMPLIFIER



*For equivalent monolithic dual, see LSK589

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-40			V	V _{DS} = 0, I _D = 100µA
VGS(OFF)	Gate to Source Pinch-off Voltage	-0.2		-2	V	V _{DS} = 10V, I _D = 1nA
V _{GS}	Gate to Source Operating Voltage		-0.5		V	V _{DS} = 10V, I _D = 1mA
IDSS	Drain to Source Saturation Current	2.6		30	mA	V _{DS} = 10V, V _{GS} = 0
lg	Gate Operating Current			-0.5	nA	V _{DG} = 10V, I _D = 1mA
I _{GSS}	Gate to Source Leakage Current			-1	nA	$V_{GS} = -10V, V_{DS} = 0$
Gfs	Full Conduction Transconductance		22		mS	$V_{GD} = 10V, V_{GS} = 0, f = 1kHz$
Gfs	Typical Conduction Transconductance		10		mS	V_{DG} = 15V, I_D = 1mA
R _{DS(on)}	Drain to Source on Resistance		75	150	Ω	$V_{GS} = 0V, I_D = -1mA$
Ciss	Common Source Input Capacitance		20		pF	V _{DS} = 15V, I _D = 100µA, <i>f</i> = 1MHz
Crss	Common Source Reverse Transfer Cap.		5		pF	$v_{DS} = 13v$, $i_{D} = 100\mu A$, $i = 100\mu A$

Standard Package Dimensions:

NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse Test: PW \leq 300µs, Duty Cycle \leq 3%
- 3. Derate 2.8mW/°C above TA = 25°C
- 4. Mounted on FR5 board, 25mm x 25mm x 1.57mm
- 5. Derate by 25mW/°C above 25°C
- 6. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only.

Over 30 Years of Quality Through Innovation

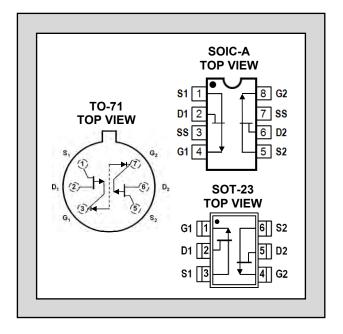
FEATURES	
ULTRA LOW NOISE	$e_n = 2.0 nV/\sqrt{Hz}$
LOW INPUT CAPACITANCE	Ciss = 8pF

Features

- Reduced Noise due
 to process improvement
- Monolithic Design
- High slew rate
- Low offset/drift voltage
- Low gate leakage lgss & lg
- High CMRR 102 dB

Benefits

- Tight differential voltage match vs. current
- Improved op amp speed settling time accuracy
- Minimum Input Error trimming error voltage
- Lower intermodulation distortion


Applications

- Wide band differential Amps
- High speed temperature compensated single ended input amplifier amps
- High speed comparators
- Impedance Converters

Description

The LSJ689 high performance, P-Channel, monolithic dual JFET features extremely low noise, tight offset voltage and low drift over temperature. It is targeted for use in a wide range of precision instrumentation applications. The SOT-23, TO-71 and SO-8 packages provide ease of manufacturing and the symmetrical pinouts prevent improper orientation. The SOT-23 and SO-8 packages are available in tape and reel, compatible with automatic assembly methods. (See packaging data)

ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-55 to +150°C				
Junction Operating Temperature	-55 to +150°C				
Maximum Power Dissipation, TA = 25°C					
Continuous Power Dissipation, per side ⁴	300mW				
Power Dissipation, total ⁵	500mW				
Maximum Currents					
Gate Forward Current	$I_{G(F)}$ = -10mA				
Maximum Voltages					
Gate to Source	$V_{GS} = 50V$				
Gate to Drain	$V_{GD} = 50V$				

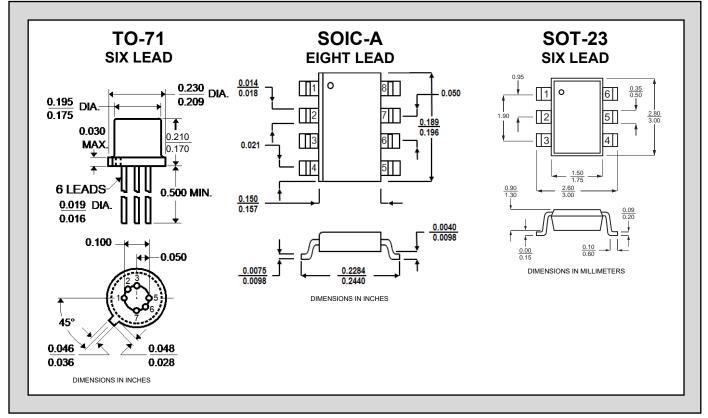
<u>LSJ689</u>

LOW NOISE LOW CAPACITANCE MONOLITHIC DUAL P-CHANNEL JFET AMPLIFIER

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

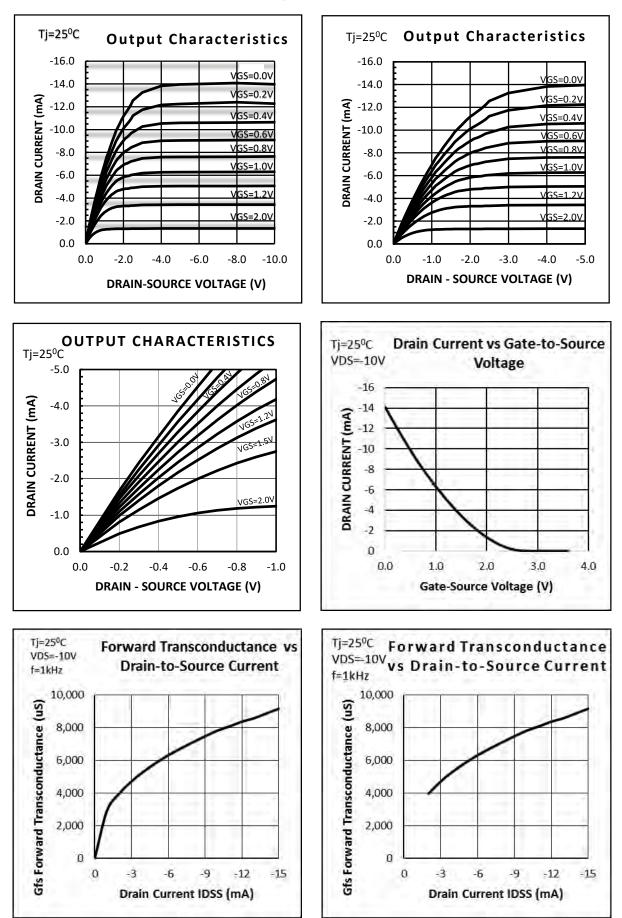
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
VGS1-VGS2	Differential Gate to Source Voltage			20	mV	V _{DS} = -15V, I _G = -1mA
DSS1 DSS2	Saturation Drain Current Ratio	0.90		1.0		V_{DS} = -15V, V_{GS} = 0V
CMRR	$\frac{\text{COMMON MODE REJECTION RATIO}}{-20 \log \left \Delta V_{GS1-2} / \Delta V_{DS} \right }$	95	102		db	V_{DS} = -10V to -20V, I_D = -200µA

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
en	Noise Voltage		1.9		nV/√Hz	V _{DS} = -15V, I _D = -2.0mA, <i>f</i> = 1kHz, NBW = 1Hz
en	Noise Voltage		2.2		nV/√Hz	V _{DS} = -15V, I _D = -2.0mA, <i>f</i> = 100Hz, NBW = 1Hz
CISS	Common Source Input Capacitance		8		pF	
Crss	Common Source Reverse Transfer Capacitance		3		pF	V _{DS} = -15V, I _D = -200μA, <i>f</i> = 1MHz

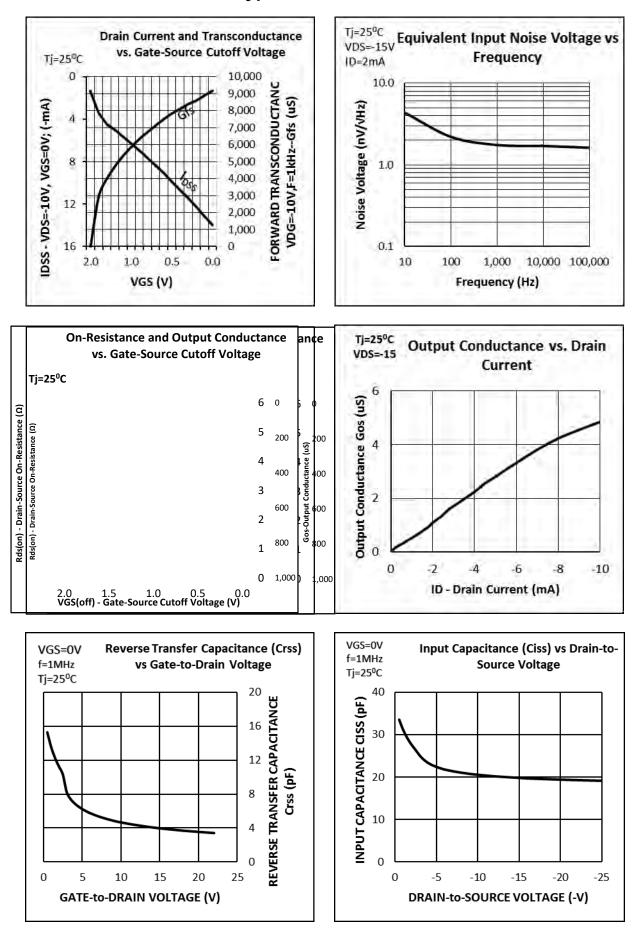

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	50			V	$V_{DS} = 0V, I_G = 1\mu A$
V(BR)G1 - G2	Gate to Gate Breakdown Voltage	±30	±45		V	I _G = ±1µA, I _D =I _S =0A (Open Circuit)
V _{GS(OFF)}	Gate to Source Pinch-off Voltage	1.50		5.0	V	$V_{DS} = -15V, I_{D} = -1nA$
IDSS ²	Drain to Source Saturation Current	-2.5		-30	mA	V _{DS} = -15V, V _{GS} = 0V
lg	Gate Operating Current		2		pА	V _{DG} = -15V, I _D = -200µA
Igss	Gate to Source Leakage Current		0.9	100	pА	V _{GS} = 15V, V _{DS} = 0V
G _{fs}	Full Conductance Transconductance	1500			μS	$V_{DS} = -15V, V_{GS} = 0V, f = 1kHz$
G _{fs}	Transconductance		1500		μS	V _{DS} = -15V, I _D = -200µA, <i>f</i> = 1kHz
Gos	Full Output Conductance		38		μS	$V_{DS} = -15V, V_{GS} = 0V, f = 1kHz$
Gos	Output Conductance		3		μS	V _{DS} = -15V, I _D = -200µA, <i>f</i> = 1kHz
NF	Noise Figure		0.5		db	V_{DS} = -15V, V_{GS} = 0V, R_G = 10m Ω

TYPICAL SPICE PARAMETERS FOR LSJ689 IN LT SPICE FORMAT:

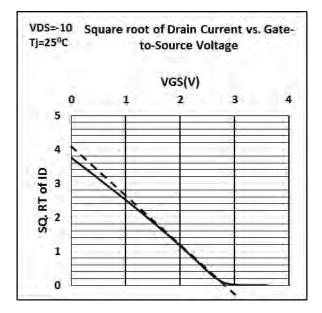

LSJ689_4 IDSS = 14.0mA RDS=112
.MODEL LSJ689_4 PJF (LEVEL=1 BETA=28E-4 VTO=-2.75 LAMBDA=2E-3
+ IS=4.5E-16 N= 1 RD=73 RS=35 CGD=6E-12 CGS=11E-12 PB=0.25 MJ=0.3 FC=0.5
+ KF=2E-18 AF=1 XTI=0)

Standard Package Dimensions:



NOTES:

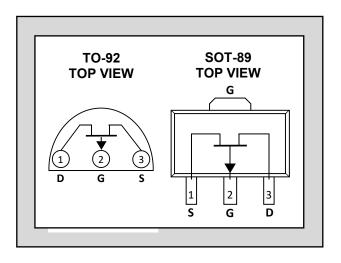
- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse width $\leq 2_{ms}$.
- 3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate electrical polarity only.
- 4. Derate 2.4 mW/°C above 25°C.
- 5. Derate 4 mW/°C above 25°C.



LSJ689 Typical Characteristics

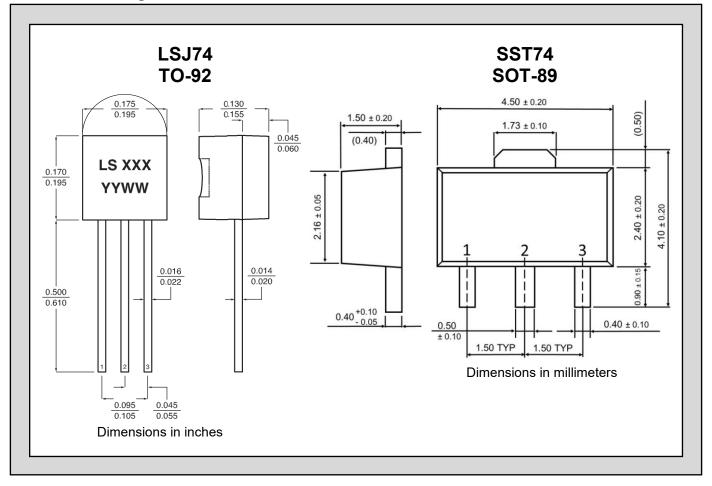
LSJ689 Typical Characteristics Continued

LSJ689 Typical Characteristics Continued

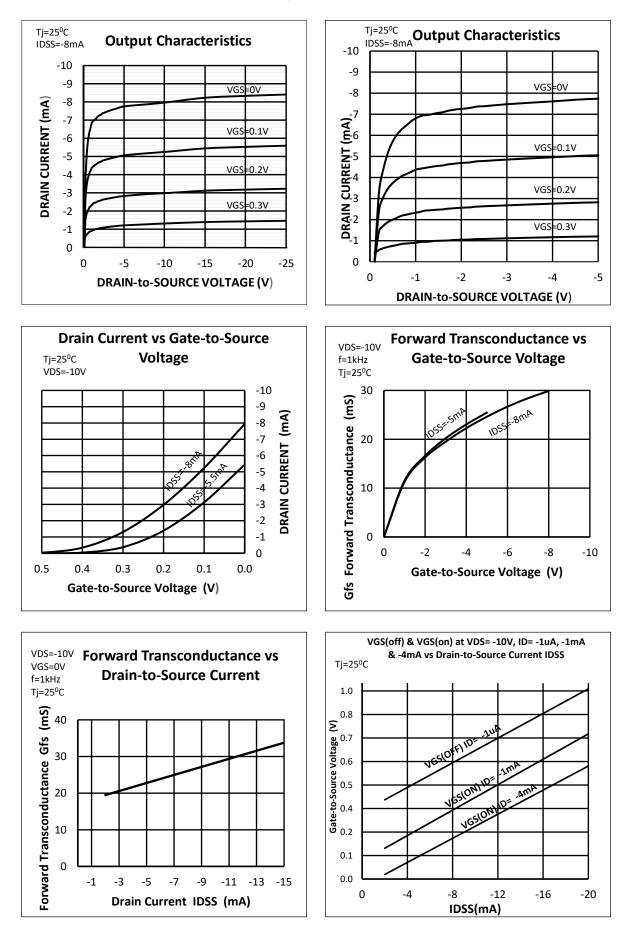


Over 30 Years of Quality Through Innovation

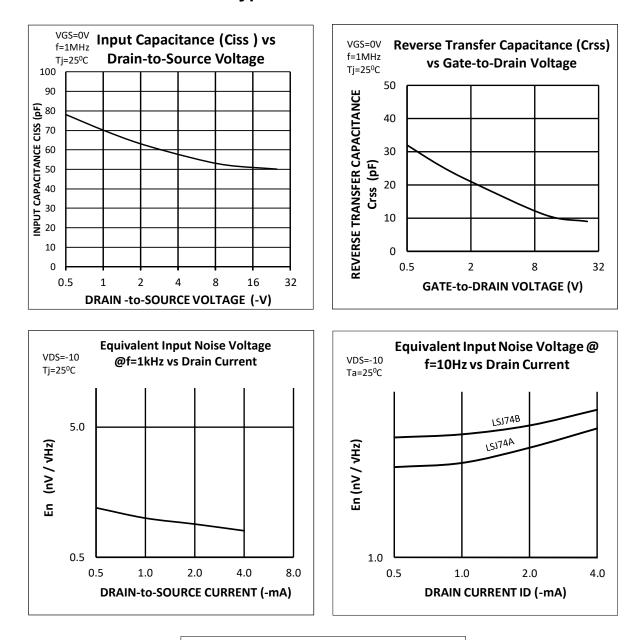
FEATURES						
ULTRA LOW NOISE (f = 1kHz)	$e_n = 0.9 nV/\sqrt{Hz}$					
HIGH GAIN	G _{fs} = 22mS (typ)					
HIGH INPUT IMPEDANCE	I _G = 1.0nA					
LOW CAPACITANCE	C _{RSS} = 32pF					
IMPROVED SECOND SOURCE REPLACEM	IENT FOR 2SJ74					
ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)						
Maximum Temperatures	Maximum Temperatures					
Storage Temperature	-55 to +150°C					
Junction Operating Temperature	-55 to +135°C					
Maximum Power Dissipation						
Continuous Power Dissipation	400mW					
Maximum Currents						
Gate Forward Current I _{G(F)} = -10mA						
Maximum Voltages						
Gate to Drain Voltage	$V_{GDS} = 25V$					
Gate to Source Voltage	$V_{GSS} = 25V$					


<u>LSJ74, SST74</u>

ULTRA LOW NOISE SINGLE P-CHANNEL JFET


ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise stated)

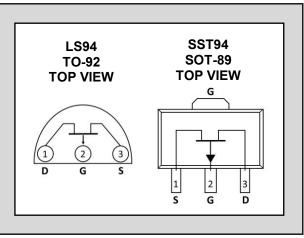
SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GDS}	Gate to Drain Breakdown Voltage		25			V	V _{DS} = 0V, I _G = 100µA
VGS(OFF)	Gate to Source Pinch-off Volt	age	0.15		2	v	$V_{DS} = -10V, I_{D} = -0.1 \mu A$
		LSJ74A	-2.6		-6.5		
IDSS	Drain to Source Saturation	LSJ74B	-6		-12	m۸	V _{DG} = -10V, V _{GS} = 0V
IDSS	Current ²	LSJ74C	-10		-20	mA	$v_{\rm DG} = -10v$, $v_{\rm GS} = 0v$
		LSJ74D	-17		-30		
lg	Gate Operating Current			50		pА	$V_{DG} = -10V, I_{D} = -1mA$
I _{GSS}	Gate to Source Leakage Curr	rent			1	nA	V_{GS} = 25V, V_{DS} = 0V
G _{fss}	Full Conductance Transcond	uctance	8	22		mS	V_{DG} = -10V, V_{GS} = 0V, f = 1kHz
en				1.9		nV/√Hz	V _{DS} = -10V, I _D = -2mA, <i>f</i> = 1kHz, NBW = 1Hz
En	Noise Voltage			4		11 V / VI IZ	V _{DS} = -10V, I _D = -2mA, <i>f</i> = 10Hz, NBW = 1Hz
CISS	Common Source Input Capacitance			105			$V_{DS} = -10V, V_{GS} = 0V, f = 1MHz$
Crss	Common Source Reverse Tra	ansfer Cap.		32		pF	$V_{DS} = -10V, I_D = 0A, f = 1MHz$



NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse test: PW ≤ 300 μ S, Duty Cycle ≤ 3%.
- 3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate negative electrical polarity only.

LSJ74 Typical Characteristic

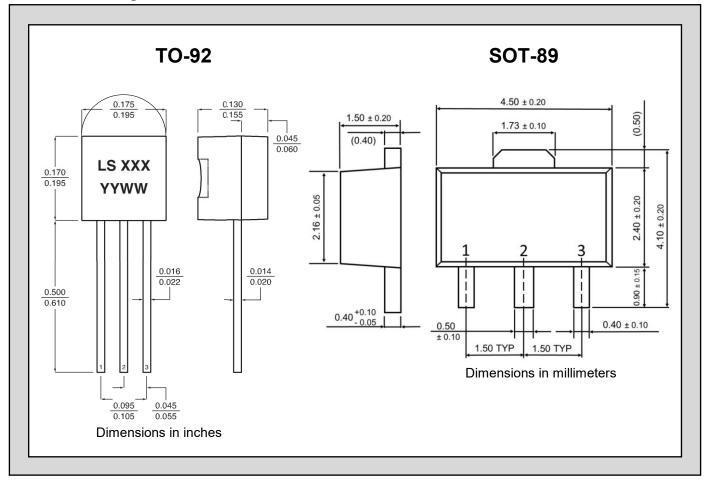

Equivalent Input Noise Voltage vs frequency VDS=-10 Ta=25°C 5.0 (F) 0.5 0.5 0.5 0.5 10 100 1,000 Frequency (Hz)

Over Three Decades of Quality Through Innovation

LS94, SST94

GENERAL PURPOSE SINGLE P-CHANNEL JFET

FEATURES	
HIGH GAIN	G _{fs} = 22mS (typ)
HIGH INPUT IMPEDANCE	I _G = 1.0nA
LOW CAPACITANCE	C _{RSS} = 32pF
ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)	
Maximum Temperatures	
Storage Temperature	-55 to +150°C
Junction Operating Temperature	-55 to +135°C
Maximum Power Dissipation	
Continuous Power Dissipation	400mW
Maximum Currents	
Gate Forward Current	$I_{G(F)}$ = -10mA
Maximum Voltages	
Gate to Drain Voltage	$V_{GD} = 25V$
Gate to Source Voltage	V _{GS} = 25V



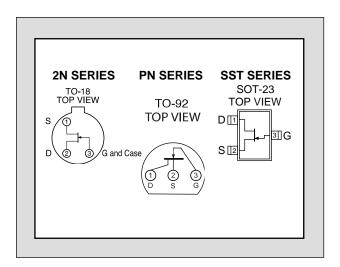
* For equivalent N-Channel, see LS190

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GDS}	Gate to Drain Breakdown Voltage	25			V	V _{DS} = 0V, I _G = 100µA
VGS(OFF)	Gate to Source Pinch-off Voltage	0.15		2	v	V _{DS} = -10V, I _D = -0.1µA
IDSS	Drain to Source Saturation Current ²	-2.6		-30	mA	V_{DS} = -10V, V_{GS} = 0V
lg	Gate Operating Current		50		pА	$V_{DG} = -10V, I_{D} = -1mA$
Igss	Gate to Source Leakage Current			1	nA	V _{GS} = 25V, V _{DS} = 0V
G _{fss}	Full Conductance Transconductance	8	22		mS	$V_{DS} = -10V, V_{GS} = 0V, f = 1kHz$
R _{DS(on)}	Drain to Source on Resistance		75	150	Ω	$V_{GS} = 0V, I_{D} = -1mA$
Ciss	Common Source Input Capacitance		105		рF	$V_{DS} = -10V, V_{GS} = 0V, f = 1MHz$
Crss	Common Source Reverse Transfer Cap.		32		рг	$V_{DS} = -10V, I_D = 0A, f = 1MHz$

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise stated)

Standard Package Dimensions:

NOTES:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse test: PW \leq 300 μ S, Duty Cycle \leq 3%
- 3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate negative electrical polarity only.

Quality Through Innovation Since 1987

FEATURES								
Replacement for Siliconix 2N/PN/SST4391, 4292, & 4393								
LOW ON RESISTANCE	$r_{DS(on)} \le 30\Omega$							
FAST SWITCHING	t _{on} ≤ 15ns							
ABSOLUTE MAXIMUM RATINGS ¹								
@ 25 °C (unless otherwise stated)								
Maximum Temperatures								
Storage Temperature (2N)	-65 to 200°C							
Storage Temperature (PN/SST)	-55 to 150°C							
Junction Operating Temperature (2N)	-55 to 200°C							
Junction Operating Temperature (PN/SST)	-55 to 150°C							
Maximum Power Dissipation								
Continuous Power Dissipation (2N)@Tc=25°C	1800mW ³							
Continuous Power Dissipation (PN/SST)	$350 \mathrm{mW}^4$							
Maximum Currents								
Gate Current	50mA							
Maximum Voltages								
Gate to Drain or Source (2N/PN)	-40V							

2N/PN/SST4391 SERIES

SINGLE N-CHANNEL JFET SWITCH

STATIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

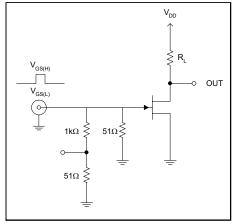
SVM	SYM. CHARACTERISTIC		ТҮР	43	91	43	92	43	93	UNIT	CONDITIONS
5111.			ITP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
BV_{GSS}	Gate to Source Breakdown Voltage	2N/PN/SST		-40		-40		-40			I_G = -1µA, V_{DS} = 0V
V	Gate to Source	2N/PN		-4	-10	-2	-5	-0.5	-3		$V_{DS} = 20V, I_{D} = 1nA$
$V_{GS(off)}$	Cutoff Voltage	SST		-4	-10	-2	-5	-0.5	-3	V	V _{DS} = 15V, I _D = 10nA
V _{GS(F)}	Gate to Source Forward Voltage		0.7		1		1		1	v	I_G = 1mA, V_{DS} = 0V
			0.25						0.4		V_{GS} = 0V, I_D = 3mA
V _{DS(on)}	Drain to Source On Volta	ge	0.3				0.4			l	V_{GS} = 0V, I_D = 6mA
			0.35		0.4						V_{GS} = 0V, I_{D} = 12mA
		2N		50	165	25	150	5	125		
I _{DSS}	Drain to Source Saturation Current ²	PN		50	165	25	150	5	125	mA	V_{DS} = 20V, V_{GS} = 0V
	Saturation Surrent	SST		50		25		5			
	Cata Laakaga Current	2N/SST	-5		-100		-100		-100		$y_{1} = 20y_{1}y_{2} = 0y_{1}$
I _{GSS}	Gate Leakage Current	PN	-5		-1000		-1000		-1000	pА	V_{GS} = -20V, V_{DS} = 0V
l _G	Gate Operating Current		-5								V_{DG} = 15V, I_{D} = 10mA

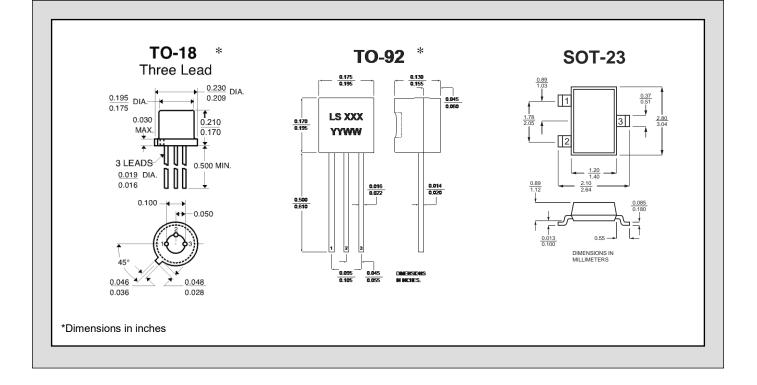
STATIC ELECTRICAL CHARACTERISTICS CONT. @25 °C (unless otherwise stated)

SVM	SYM. CHARACTERISTIC		ТҮР	43	4391		4392		93	UNIT	CONDITIONS
3 T IVI.			IIF	MIN	MAX	MIN	MAX	MIN	MAX		CONDITIONS
		5						100		V_{DS} = 20V, V_{GS} = -5V	
		2N	5				100				V_{DS} = 20V, V_{GS} = -7V
		5		100						V_{DS} = 20V, V_{GS} = -12V	
I _{D(off)}	I _{D(off)} Drain Cutoff Current	PN	5						1000	pА	V _{DS} = 20V, V _{GS} = -5V
			5				1000				V_{DS} = 20V, V_{GS} = -7V
	-		5		1000						V _{DS} = 20V, V _{GS} = -12V
		SST	5		100		100		100		V_{DS} = 10V, V_{GS} = -12V
r _{DS(on)}	Drain to Source On Resis	stance			30		60		100	Ω	V_{GS} = 0V, I_D = 1mA

DYNAMIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

0)/14		CHARACTERISTIC		43	91	43	92	43	93		
SYM.			TYP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
g _{fs}	Forward Transconductance		6							mS	V _{DS} = 20V, I _D = 1mA
g os	Output Conductance		25							μS	f = 1kHz
r _{ds(on)}	Drain to Source On Resis	stance			30		60		100	Ω	V_{GS} = 0V, I_D = 1mA
		2N	12		14		14		14		
Ciss	Input Capacitance	PN	12		16		16		16		V _{DS} = 20V, V _{GS} = 0V f = 1MHz
		SST	13								
		2N	3.3						3.5		V _{DS} = 0V, V _{GS} = -5V f = 1MHz
		PN	3.5						5		
		SST	3.6							ъĘ	
	_ _ <i>_ (</i>	2N	3.2				3.5			pF	
C _{rss}	Reverse Transfer Capacitance	PN	3.4				5				V _{DS} = 0V, V _{GS} = -7V f = 1MHz
	• ap a situation	SST	3.5								
		2N	2.8		3.5						
		PN	3.0		5						$V_{DS} = 0V, V_{GS} = -12V$ f = 1MHz
		SST	3.1								
en	Equivalent Input Noise V	oltage	3							nV/√Hz	$V_{DS} = 10V, I_D = 10mA$ f = 1kHz


SWITCHING ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

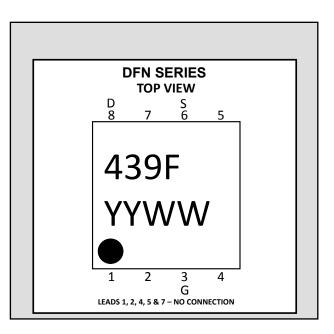

CVM	CHARACTERISTIC		ТҮР	43	91	43	92	43	93	UNIT	CONDITIONS
SYM.	CHARACTERISTIC		116	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
+	t _{d(on)} Turn On Time	2N/PN	2		15		15		15		
Ld(on)		SST	2								
+		2N/PN	2		5		5		5		V_{DD} = 10V, $V_{GS(H)}$ = 0V
tr		SST	2							20	
+		2N/PN	6		20		35		50	ns	
Ld(off)	t _{d(off)} Turn Off Time	SST	6								
+		2N/PN	13		15		20		30		
t _f		SST	13								

SWITCHING CIRCUIT CHARACTERISTICS

SYM.	4391	4392	4393		
$V_{GS(L)}$	-12V	-7V	-5V		
RL	800Ω	1600Ω	3200Ω		
I _{D(on)}	12mA	6mA	3mA		

SWITCHING TEST CIRCUIT

NOTES :


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse test: PW \leq 300µs, Duty Cycle \leq 3%
- 3. Derate 10mW/°C above 25°C
- 4. Derate 2.8mW/°C above 25°C

Improved Standard Products[®]

FEATURES								
LOW ON RESISTANCE	$r_{DS(on)} \le 30\Omega$							
FAST SWITCHING $t_{ON} \le 15$								
ABSOLUTE MAXIMUM RATINGS ¹								
@ 25 °C (unless otherwise stated)								
Maximum Temperatures								
Storage Temperature	-55 to 150°C							
Junction Operating Temperature	-55 to 150°C							
Maximum Power Dissipation								
Continuous Power Dissipation ³	300mW							
Maximum Currents								
Gate Current	50mA							
Maximum Voltages								
Gate to Drain or Source	-40V							

4391DFN SERIES

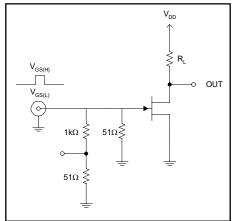
MINIATURE/NON-MAGNETIC 8-PIN DFN PACKAGE N-CHANNEL JFET SWITCH

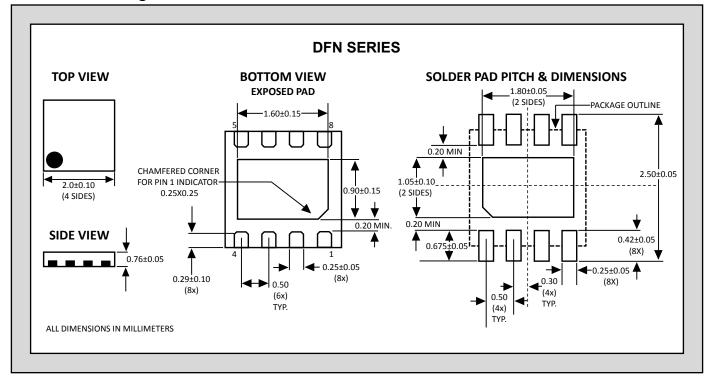
STATIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

CV/M	CHARACTERISTIC	ТҮР	4391	DFN	4392	DFN	4393	DFN		CONDITIONS
SYM.	CHARACTERISTIC	ITP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage		-40		-40		-40			I _G = -1µA, V _{DS} = 0V
V _{GS(off)}	Gate to Source Cutoff Voltage		-4	-10	-2	-5	-0.5	-3		V_{DS} = 15V, I_{D} = 10nA
V _{GS(F)}	Gate to Source Forward Voltage	0.7		1		1		1	V	I_G = 1mA, V_{DS} = 0V
		0.25						0.4	v	V_{GS} = 0V, I_D = 3mA
V _{DS(on)}	Drain to Source On Voltage	0.3				0.4				V_{GS} = 0V, I_D = 6mA
		0.35		0.4						V_{GS} = 0V, I_{D} = 12mA
IDSS	Drain to Source Saturation Current ²		50		25		5		mA	V_{DS} = 20V, V_{GS} = 0V
lgss	Gate Leakage Current	005		-1.0		-1.0		-1.0	nA	V_{GS} = -20V, V_{DS} = 0V
lg	Gate Operating Current	005							ΠA	V_{DG} = 15V, I_{D} = 10mA
I _{D(off)}	Drain Cutoff Current	.005		1.0		1.0		1.0	nA	V_{DS} = 10V, V_{GS} = -12V
r DS(on)	Drain to Source On Resistance			30		60		100	Ω	V_{GS} = 0V, I_D = 1mA

4391DFN 4392DFN 4393DFN SYM. CHARACTERISTIC TYP UNIT CONDITIONS MIN MAX MIN MAX MIN MAX **g**fs Forward Transconductance 6 mS $V_{DS} = 20V, I_D = 1mA$ f = 1 kHz**Output Conductance** 25 μS gos V_{DS} = 20V, V_{GS} = 0V Ciss Input Capacitance 13 f = 1 MHz $V_{DS} = 0V, V_{GS} = -5V$ 3.6 f = 1 MHzpF $V_{DS} = 0V, V_{GS} = -7V$ C_{rss} Reverse Transfer Capacitance 3.5 f = 1 MHzV_{DS} = 0V, V_{GS} = -12V 3.1 f = 1 MHzV_{DS} = 10V, I_D = 10mA Equivalent Input Noise Voltage 3 nV/√Hz en f = 1 kHz

DYNAMIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)


SWITCHING ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

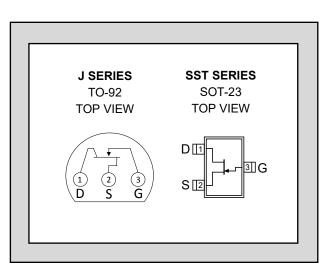

	TVD	4391DFN		4392DFN		4393DFN			CONDITIONS	
SYM.	CHARACTERISTIC	TYP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
t _{d(on)}		2								V_{DD} = 10V, $V_{GS(H)}$ = 0V
tr	Turn On Time	2							-	
t _{d(off)}		6							ns	
t _f	Turn Off Time	13								

SWITCHING CIRCUIT CHARACTERISTICS

SYM.	4391DFN	4392DFN	4393DFN		
V _{GS(L)}	-12V	-7V	-5V		
RL	800Ω	1600Ω	3200Ω		
I _{D(on)}	12mA	6mA	3mA		

SWITCHING TEST CIRCUIT

NOTES:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse test: PW \leq 300µs, Duty Cycle \leq 3%
- 3. Derate 2.8mW/°C above 25°C

Improved Standard Products[®]

FEATURES					
DIRECT REPLACEMENT FOR SILICONIX J/SST111 SERIES					
LOW GATE LEAKAGE CURRENT	5pA				
FAST SWITCHING	4ns				
ABSOLUTE MAXIMUM RATINGS ¹					
@ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-55 to 150°C				
Junction Operating Temperature	-55 to 150°C				
Maximum Power Dissipation					
Continuous Power Dissipation (J) ³	360mW				
Continuous Power Dissipation (SST) ³	350mW				
Maximum Currents					
Gate Current	50mA				
Maximum Voltages					
Gate to Drain	-35V				
Gate to Source	-35V				

J/SST111 SERIES

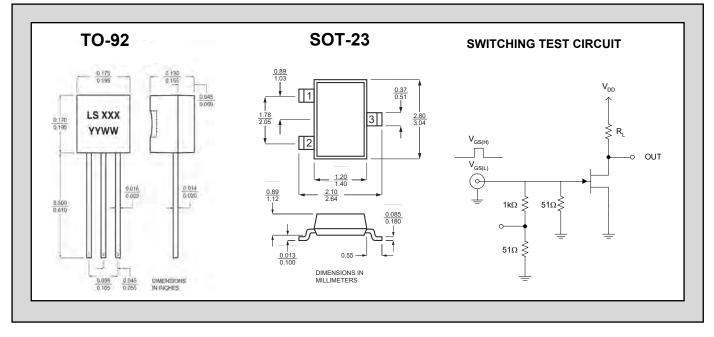
SINGLE N-CHANNEL JFET SWITCH

STATIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

SYM.	CHARACTERISTIC	ТҮР	J/SS	T111	J/SS	T112	J/SS	T113	UNIT	CONDITIONS
5111.	CHARACTERISTIC	ITP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage		-35		-35		-35			$I_{G} = -1 \mu A$, $V_{DS} = 0 V$
V _{GS(off)}	Gate to Source Cutoff Voltage		-3	-10	-1	-5		-3	V	V_{DS} = 5V, I_D = 1 μ A
V _{GS(F)}	Gate to Source Forward Voltage	0.7								I_G = 1mA, V_{DS} = 0V
IDSS	Drain to Source Saturation Current ²		20		5		2		mA	V_{DS} = 15V, V_{GS} = 0V
I _{GSS}	Gate Leakage Current	-0.005		-1		-1		-1	nA	V_{GS} = -15V, V_{DS} = 0V
lg	Gate Operating Current	-5							pА	V_{DG} = 15V, I _D = 1.0mA
I _{D(off)}	Drain Cutoff Current	0.005		1		1		1	nA	$V_{DS} = 5V, V_{GS} = -10V$
r DS(on)	Drain to Source On Resistance			30		50		100	Ω	$V_{GS} = 0V, V_{DS} = 0.1V$

DYNAMIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

SYM.	CHARACTERISTIC	ТҮР	J/SS	T111	J/SS	T112	J/SS	T113	UNIT	CONDITIONS
5111.	CHARACTERISTIC	ITP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
g _{fs}	Forward Transconductance	6							mS	V _{DS} = 20V, I _D = 1mA
gos	Output Conductance	25							μS	f = 1kHz
rds(on)	Drain to Source On Resistance			30		50		100	Ω	V_{GS} = 0V, I _D = 1mA f = 1kHz
Ciss	Input Capacitance	7		12		12		12	ъĘ	V _{DS} = 0V, V _{GS} = -10V <i>f</i> = 1MHz
Crss	Reverse Transfer Capacitance	3		5		5		5	pF	
en	Equivalent Noise Voltage	3							nV/√Hz	V _{DG} = 10V, I _D = 1mA f = 1 kHz


SWITCHING CHARACTERISTICS

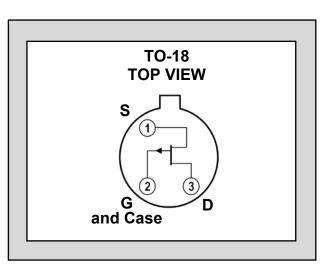
SYM.	CHARACTERISTIC	TYP	UNIT	CONDITIONS	
t _{d(on)}	Turn On Time	2			
tr		2	20	$V_{DD} = 10V$ $V_{GS(H)} = 0V$	
$t_{\text{d(off)}}$	Turn Off Time	6	ns		
tſ	Turn On Time	15			

SWITCHING CIRCUIT CHARACTERISTICS

SYM.	J/SST111	J/SST112	J/SST113
V _{GS(L)}	-12V	-7V	-5V
RL	800Ω	1600Ω	3200Ω
I _{D(on)}	12mA	6mA	3mA

STANDARD PACKAGE DIMENSIONS:

NOTES:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse test: PW \leq 300µs, Duty Cycle \leq 3%
- 3. Derate 2.8mW/°C above 25°C

Improved Standard Products[®]

FEATURES							
DIRECT REPLACEMENT FOR SILICONIX 2N5018							
ZERO OFFSET VOLTAGE	ZERO OFFSET VOLTAGE						
LOW ON RESISTANCE	75Ω						
ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)							
Maximum Temperatures							
Storage Temperature	-55 to 150°C						
Junction Operating Temperature	-55 to 150°C						
Maximum Power Dissipation							
Continuous Power Dissipation ³	500mW						
Maximum Currents							
Gate Current	-10mA						
Maximum Voltages							
Gate to Drain	30V						
Gate to Source	30V						

2N5018 SERIES

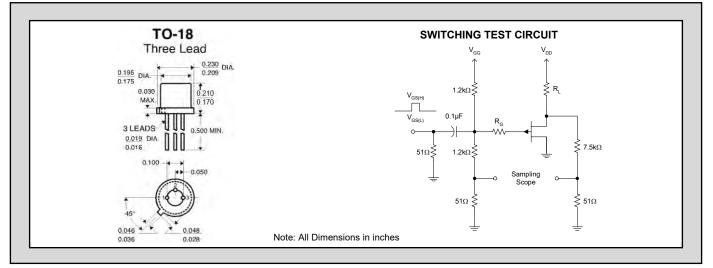
SINGLE P-CHANNEL JFET SWITCH

STATIC ELECTRICAL CHARACERISTICS @25°C (unless otherwise stated)

SYM.	CHARACTERISTIC	ТҮР	2N5	5018	2N5	5019	UNITS	CONDITIONS
5 T IVI.	CHARACTERISTIC	ITP	MIN	MAX	MIN	MAX		CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage		30		30			I _G = 1µA, V _{DS} = 0V
V _{GS(off)}	Gate to Source Cutoff Voltage			10		5	v	V _{DS} = -15V, I _D = -1µA
	Drain to Source On Voltage			-0.5			v	V_{GS} = 0V, I_D = -6mA
V _{DS(on)}	Drain to Source On Voltage					-0.5		V_{GS} = 0V, I_{D} = -3mA
IDSS	Drain to Source Saturation Current ²		-10		-5		mA	V_{DS} = -20V, V_{GS} = 0V
lgss	Gate Leakage Current			2		2	nA	V_{GS} = 15V, V_{DS} = 0V
1	Drain Cutoff Current			-10		-10	ΠA	V_{DS} = -15V, V_{GS} = 12V
D(off)	Drain Cuton Current					-10	μA	V_{DS} = -15V, V_{GS} = 7V
Idgo	Drain Reverse Current			-2		-2	nA	V _{DG} = -15V, I _S = 0A
r _{DS(on)}	Drain to Source On Resistance			75		150	Ω	I _D = -1mA, V _{GS} = 0V

DYNAMIC ELECTRICAL CHARACTERISTICS @25°C (unless otherwise stated)

SYM.	CHARACTERISTIC	ТҮР	2N5018		2N5019		UNITS	CONDITIONS
51111.	CHARACTERISTIC	ITF	MIN	MAX	MIN	MAX		CONDITIONS
r _{ds(on)}	Drain to Source On Resistance			75		150	Ω	I _D = -100μΑ,V _{GS} = 0V <i>f</i> = 1kHz
Ciss	Input Capacitance			45		45		V _{DS} = -15V, V _{GS} = 0V f = 1MHz
Crss	Reverse Transfer Capacitance			10			pF	$V_{DS} = 0V, V_{GS} = 12V$ f = 1MHz
Orss	Neverse mansier Capacitance					10		$V_{DS} = 0V, V_{GS} = 7V$ f = 1MHz


SWITCHING CHARACTERISTICS (max)

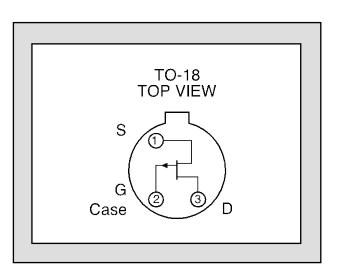
SYM.	CHARACTERISTIC	2N5018	2N5019	UNITS
t _{d(on)}	Turn On Time	15	15	
tr	rum on nime	20	75	20
t _{d(off)}	Turn Off Time	15	25	ns
t _f	Turn On Time	50	100	

SWITCHING CIRCUIT CHARACTERISTICS

SYM.	2N5018	2N5019
V _{DD}	-6V	-6V
V_{GG}	12V	8V
R∟	910Ω	1.8KΩ
R _G	220Ω	390Ω
I _{D(on)}	-6mA	-3mA
V _{GS(H)}	0V	0V
V _{GS(L)}	12V	7V

STANDARD PACKAGE DIMENSIONS:

NOTES:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse test: PW \leq 300µs, Duty Cycle \leq 3%
- 3. Derate 3mW/°C above 25°C.

Improved Standard Products[®]

FEATURES	FEATURES					
REPLACEMENT FOR SILICONIX 2N5114, 2N5115, 2N5116						
LOW ON RESISTANCE	75Ω					
LOW CAPACITANCE	6pF					
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-65 to 150°C					
Junction Operating Temperature	-55 to 150°C					
Maximum Power Dissipation						
Continuous Power Dissipation ³	500mW					
Maximum Currents						
Gate Current	-50mA					
Maximum Voltages						
Gate to Drain	30V					
Gate to Source	30V					

2N5114 SERIES

SINGLE P-CHANNEL JFET SWITCH

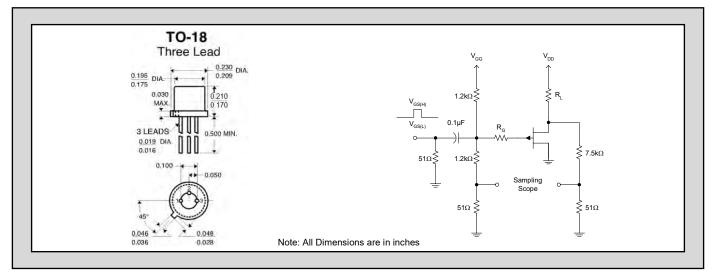
STATIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

0)/14			2N5	5114	2N5	5115	2N5	5116		
SYM.	CHARACTERISTIC	ТҮР	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage		30		30		30			$I_G = 1\mu A$, $V_{DS} = 0V$
V _{GS(off)}	Gate to Source Cutoff Voltage		5	10	3	6	1	4		V_{DS} = -15V, I_{D} = -1nA
V _{GS(F)}	Gate to Source Forward Voltage	-0.7		-1		-1		-1	v	I_G = -1mA, V_{DS} = 0V
		-1.0		-1.3					v	V_{GS} = 0V, I_{D} = -15mA
V _{DS(on)}	Drain to Source On Voltage	-0.7				-0.8				V_{GS} = 0V, I_D = -7mA
		-0.5						-0.6		V_{GS} = 0V, I_D = -3mA
1	Drain to Source Saturation Current ²		-30	-195					m۸	V_{DS} = -18V, V_{GS} = 0V
IDSS	Drain to Source Saturation Current-				-15	-110	-5	-55	mA	V_{DS} = -15V, V_{GS} = 0V
Igss	Gate Leakage Current	5		500		500		500		V_{GS} = 20V, V_{DS} = 0V
lg	Gate Operating Current	-5								V_{DG} = -15V, I_{D} = -1mA
		-10		-500					pА	V_{DS} = -15V, V_{GS} = 12V
I _{D(off)}	Drain Cutoff Current	-10				-500				V_{DS} = -15V, V_{GS} = 7V
								-500		V_{DS} = -15V, V_{GS} = 5V
r DS(on)	Drain to Source On Resistance			75		100		150	Ω	$V_{GS} = 0V, I_D = -1mA$

Note: All Min & Max limits are absolute values. Negative signs indicate electrical polarity only.

DYNAMIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

SYM.	CHARACTERISTIC		2N5	5114	2N5	5115	2N5	5116	UNIT	CONDITIONS
5111.	CHARACTERISTIC	TYP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
g fs	Forward Transconductance	4.5							mS	V _{DS} = -15V, I _D = -1mA
g _{os}	Output Conductance	20							μS	f = 1kHz
r _{ds(on)}	Drain to Source On Resistance			75		100		150	Ω	$V_{GS} = 0V, I_D = -1mA$ f = 1kHz
Ciss	Input Capacitance	20		25		25		25		V_{DS} = -15V, V_{GS} = 0V f = 1MHz
		5		7					~ ~	V _{DS} = 0V, V _{GS} = 12V f = 1MHz
C _{rss}	Reverse Transfer Capacitance	6				7			pF	$V_{DS} = 0V, V_{GS} = 7V$ f = 1MHz
		6						7		$V_{DS} = 0V, V_{GS} = 5V$ f = 1MHz
en	Equivalent Noise Voltage	20							nV/√Hz	$V_{DG} = -10V, I_D = -10mA$ f = 1 kHz


SWITCHING CHARACTERISTICS (max)

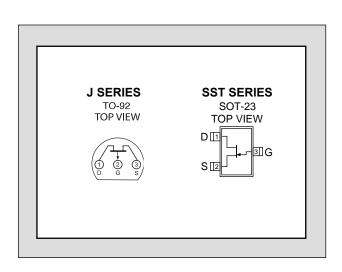
SYM.	CHARACTERISTIC	2N5114	2N5115	2N5116	UNITS
t _{d(on)}	Turn On Time	6	10	12	
tr	Turn On Time	10	20	30	20
t _{d(off)}	Turn Off Time	6	8	10	ns
tf		15	30	50	

SWITCHING CIRCUIT CHARACTERISTICS

SYM.	2N5114	2N5115	2N5116
V _{DD}	-10V	-6V	-6V
V _{GG}	20V	12V	8V
RL	R _L 430Ω		2kΩ
Rg	100Ω	220Ω	390Ω
I _{D(on)}	-15mA	-7mA	-3mA
V _{GS(H)}	V _{GS(H)} 0V		0V
V _{GS(L)}	-11V	-7V	-5V

STADARD PACKAGE DIMENSIONS:

NOTES:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse test: PW \leq 300µs, Duty Cycle \leq 3%
- 3. Derate 3mW/°C above 25°C.

Over 30 Years of Quality Through Innovation

FEATURES							
Replacement For SILICONIX J/SST174 SERIES							
LOW ON RESISTANCE	$r_{\text{DS(on)}} \le 85\Omega$						
LOW GATE OPERATING CURRENT	$I_{D(off)} = 10pA$						
ABSOLUTE MAXIMUM RATINGS ¹							
@ 25 °C (unless otherwise stated)							
Maximum Temperatures							
Storage Temperature	-55 to 150°C						
Junction Operating Temperature	-55 to 135°C						
Maximum Power Dissipation							
Continuous Power Dissipation ³	350mW						
Maximum Currents							
Gate Current	I _G = -50mA						
Maximum Voltages	Maximum Voltages						
Gate to Drain Voltage	$V_{GDS} = 30V$						
Gate to Source Voltage	V _{GSS} = 30V						

J/SST174 SERIES

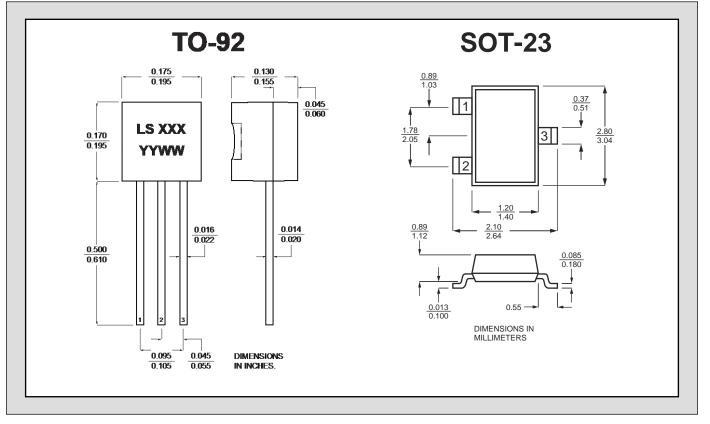
SINGLE P-CHANNEL JFET SWITCH

COMMON ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	30			V	$I_G = 1\mu A$, $V_{DS} = 0V$
VGS(F)	Gate to Source Forward Voltage		-0.7		v	I _G = -1mA, V _{DS} = 0V
I _{GSS}	Gate Reverse Current		0.01	1		V _{GS} = 20V, V _{DS} = 0V
lg	Gate Operating Current		0.01		nA	V _{DG} = -15V, I _D = -1mA
I _{D(off)}	Drain Cutoff Current		-0.01	-1		V _{DS} = -15V, V _{GS} = 10V

SPECIFIC ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

OVMDOL	CHARACTERISTIC	J/SS	T174	J/SS	T175	J/SS	J/SST176		J/SST176		ST176 J/SST		T177		CONDITIONS
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	CONDITIONS				
V _{GS(off)}	Gate to Source Cutoff Voltage	5	10	3	6	1	4	0.8	2.25	V	V _{DS} = -15V, I _D = -10nA				
I _{DSS}	Drain to Source Saturation Current	-20	-195	-7	-90	-2	-55	-1.5	-30	mA	V_{DS} = -15V, V_{GS} = 0V				
r DS(on)	Drain to Source On Resistance		85		125		250		300	Ω	V_{GS} = 0V, V_{DS} = -0.1V				


SWITCHING CHARACTERISTICS

SYMBOL	CHARACTERISTIC	TYP	UNITS	CONDITIONS	
t _{d(on)}	Turn On Time	10		$V_{00(1)} = 0V$	
tr	Turn On Rise Time	15	20	$V_{GS(L)} = 0V$ $V_{GS(H)} = 10V$ See Switching	
t _{d(off)}	Turn Off Time	10	ns		
t _f	Turn Off Fall Time	20		Circuit	

SWITCHING CIRCUIT PARAMETERS

	J/SST174	J/SST175	J/SST176	J/SST177
Vdd	-10V	-6V	-6V	-6V
V_{GG}	20V	12V	8V	5V
R∟	560Ω	750Ω	1800Ω	5600Ω
Rg	100Ω	220Ω	390Ω	390Ω
I _{D(on)}	-15mA	-7mA	-3mA	-1mA

STANDARD PACKAGE DIMENSIONS:

SWITCHING CIRCUIT

V_{GS(H)} V_{GS(L)}

O

51Ω **≤**

 $1.2k\Omega \leq$

0.1µF

 $1.2 k\Omega$

51Ω

R_L

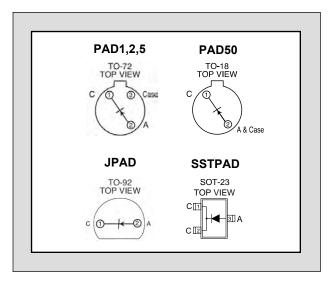
Scope

 $7.5 k\Omega$

51Ω

 R_G

NOTES:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulsed test: $P_W \le 300\mu$ S Duty Cycle: 3%
- 3. Derate 2.8mW/°C above 25 °C.

Over 30 Years of Quality Through Innovation

FEATURES						
DIRECT REPLACEMENT FOR SILICONIX P	AD SERIES					
REVERSE BREAKDOWN VOLTAGE	BV _R ≥ -30V					
REVERSE CAPACITANCE	C _{rss} ≤ 2.0pF					
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature -55 to -						
Operating Junction Temperature	-55 to +150 °C					
Maximum Power Dissipation						
Continuous Power Dissipation (PAD)	300mW					
Continuous Power Dissipation (J/SSTPAD)	350mW					
Maximum Currents	Maximum Currents					
Forward Current (PAD)	50mA					
Forward Current (J/SSTPAD)	10mA					

PAD SERIES

PICO AMPERE DIODES

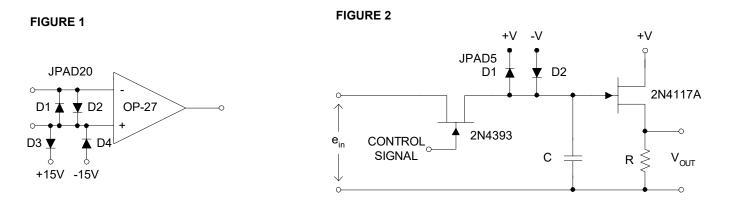
COMMON ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

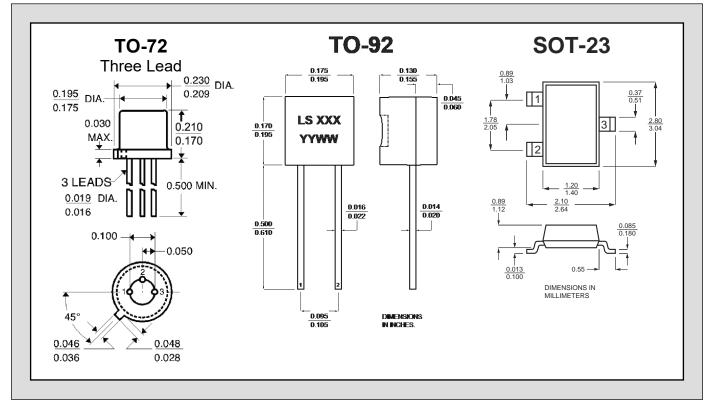
SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNITS	CONDITIONS
		ALL PAD	-45				
BV _R	Reverse Breakdown ALL SSTPAD -30 Voltage -30 -30 -30		V	Ι _R = -1μΑ			
	Vollago	ALL JPAD	-35			v	
VF	Forward Voltage			0.8	1.5		I _F = 5mA
6	Total Reverse Capacitance	PAD1,5		0.5	0.8	рF	V _R = -5V, <i>f</i> = 1MHz
C _{rss}	Total Reverse Capacitance	All Others		1.5	2	ρг	$v_R = -5v, T = TIVITIZ$

SPECIFIC ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC		PAD	JPAD	SSTPAD	UNITS	CONDITIONS	
		PAD1	-1				V _R = -20V	
		PAD2	-2					
		(SST/J)PAD5	-5	-5	-5			
		(SST/J)PAD10	-10	-10	-10			
I _R	Maximum Reverse Leakage Current	(SST/J)PAD20	-20	-20	-20	pА		
	Lounago ouriont	(SST/J)PAD50	-50	-50	-50			
		(SST/J)PAD100	-100	-100				
		(SST/J)PAD200		-200				
		(SST/J)PAD500		-500				

1. Derate 2mW/°C above 25°C


2. Derate 2.8mW/°C above 25°C

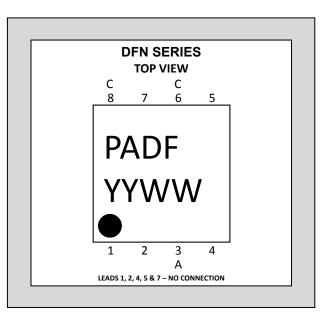

Figure 1. Operational Amplifier Protection

Input Differential Voltage limited to 0.8V (typ) by JPADs D₁ and D₂. Common Mode Input voltage limited by JPADs D₃ and D₄ to ±15V.

Figure 2. Sample and Hold Circuit

Typical Sample and Hold circuit with clipping. JPAD diodes reduce offset voltages fed capacitively from the JFET switch gate.

NOTES:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- The PAD type number denotes its maximum reverse current value in pico amperes. Devices with I_R values intermediate to those shown are available upon request.

Improved Standard Products[®]

FEATURES								
REVERSE BREAKDOWN VOLTAGE $BV_R \ge -30V$								
REVERSE CAPACITANCE	C _{rss} ≤ 2.0pF							
ABSOLUTE MAXIMUM RATINGS ¹								
@ 25 °C (unless otherwise stated)								
Maximum Temperatures								
Storage Temperature	-55 to +150 °C							
Operating Junction Temperature	-55 to +150 °C							
Maximum Power Dissipation ²								
Continuous Power Dissipation	300mW							
Maximum Currents								
Forward Current 10mA								

PAD-DFN SERIES

MINIATURE/NON MAGNETIC 8-PIN DFN PACKAGE LOW LEAKAGE DIODE

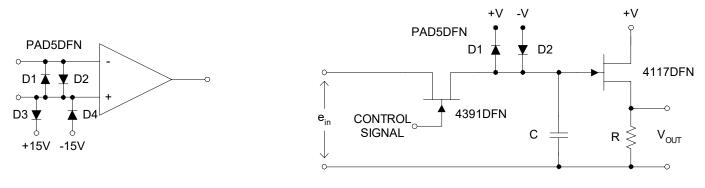
COMMON ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

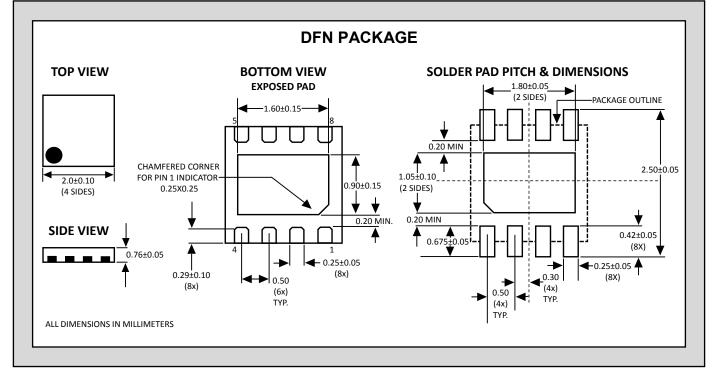
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _R	Reverse Breakdown Voltage	-30			V	Ι _R = -1μΑ
VF	Forward Voltage		0.8	1.5	v	I _F = 5mA
Crss	Total Reverse Capacitance		1.5		pF	V _R = -5V, <i>f</i> = 1MHz

SPECIFIC ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	TYP	UNITS	CONDITIONS		
I _R	Maximum Bayaraa Laakaga Currant	PAD5DFN	-5	5	N 00V	
	Maximum Reverse Leakage Current	PAD50DFN	-50	рА	V _R = -20V	

Figure 1. Operational Amplifier Protection

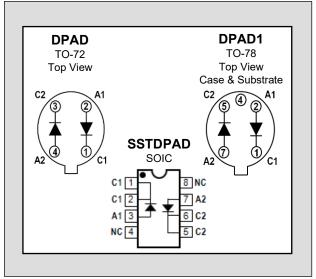

Input Differential Voltage limited to 0.8V (typ) by DFNs D_1 and D_2 . Common Mode Input voltage limited by DFNs D_3 and D_4 to ±15V.


Figure 2. Sample and Hold Circuit

Typical Sample and Hold circuit with clipping. DFN diodes reduce offset voltages fed capacitively from the JFET switch gate.

FIGURE 2

NOTES:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Derate 2.8 mW/°C above 25°C
- The PAD type number denotes its maximum reverse current value in pico amperes. Devices with I_R values intermediate to those shown are available upon request.

Over 30 Years of Quality Through Innovation

FEATURES						
Direct Replacement For SILICONIX DPAD SERIES						
HIGH ON ISOLATION	20fA					
EXCELLENT CAPACITANCE MATCHING	ΔC _R ≤0.2pF					
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25°C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-55°C to +150°C					
Operating Junction Temperature	-55°C to +150°C					
Maximum Power Dissipation						
Continuous Power Dissipation (DPAD) ³	500mW					
Maximum Currents						
Forward Current (DPAD) 50mA						

DPAD SERIES

MONOLITHIC DUAL PICO AMPERE DIODES

^{*} Case and Pin 4 must be floating on all TO-78 case devices

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS		
		DPAD1	-45					
BV _R	Reverse Breakdown Voltage	DPAD2,5,10,20,50,100	-45			V	I _R = -1µA	
	Voltago	SSTDPAD5,50,100	-30			v		
VF	Forward Voltage		0.8	1.5		I _F = 1mA		
	Differential Capacitance	DPAD1			0.2		V _{R1} = V _{R2} = -5V, <i>f</i> =1MHz	
C _{R1} - C _{R2}	(ΔC_R)	ALL OTHERS			0.5		VR1 - VR23V, I - IIVINZ	
		DPAD1			0.8	pF	V _R = -5V, <i>f</i> =1MHz	
Crss	Total Reverse Capacitance	DPAD2,5,10,20,50,100			2.0			
		SSTDPAD5,50,100			4.0			

COMMON ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise stated)

SPECIFIC ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise stated)

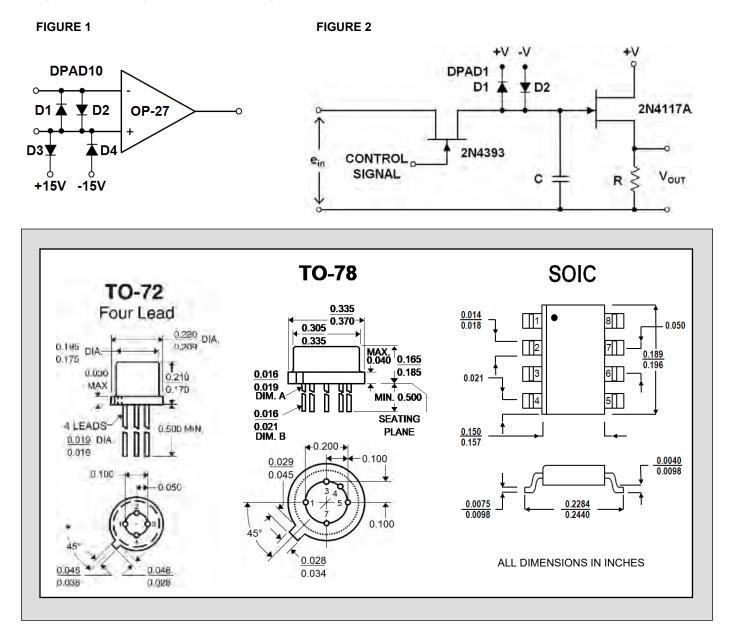

SYMBOL	CHARACTERISTIC		DPAD ²	SSTDPAD ²	UNITS	CONDITIONS	
		(SST)DPAD1	-1			V _R = -20V	
	Maximum Reverse Leakage Current ²	(SST)DPAD2	-2				
		(SST)DPAD5	-5	-5			
I _R		(SST)DPAD10	-10		pА		
		(SST)DPAD20	-20				
		(SST)DPAD50	-50	-50			
		(SST)DPAD100	-100	-100			

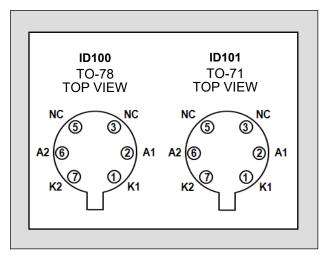
Figure 1. Operational Amplifier Protection

Input Differential Voltage limited to 0.8V (typ) by DPADs D₁ and D₂. Common Mode Input voltage limited by DPADs D₃ and D₄ to ±15V.

Figure 2. Sample and Hold Circuit

Typical Sample and Hold circuit with clipping. DPAD diodes reduce offset voltages fed capacitively from the JFET switch gate.

NOTES:


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. The DPAD type number denotes its maximum reverse current value in pico amperes. Devices with I_R values intermediate to those shown are available upon request.
- 3. Derate 4 mW/°C above 25°C

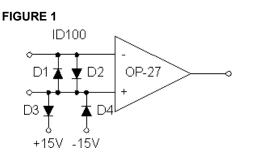
Improved Standard Products[®]

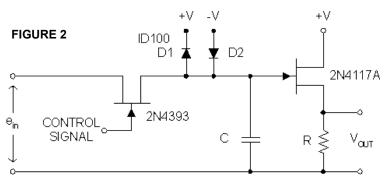
FEATURES							
DIRECT REPLACEMENT FOR INTERSIL ID100 & ID101							
REVERSE LEAKAGE CURRENT	I _R = 0.1pA						
REVERSE BREAKDOWN VOLTAGE	BV _R ≥ 30V						
REVERSE CAPACITANCE	C _{rss} = 0.75pF						
ABSOLUTE MAXIMUM RATINGS ¹							
@ 25 °C (unless otherwise stated)							
Maximum Temperatures							
Storage Temperature	-65 to +150 °C						
Operating Junction Temperature	-55 to +150 °C						
Maximum Power Dissipation @ TA = + 25°							
Continuous Power Dissipation	300mW						
Maximum Currents							
Forward Current	20mA						
Reverse Current	100µA						
Maximum Voltages							
Reverse Voltage 30V							
Diode to Diode Voltage ±50V							

<u>ID100 ID101</u>

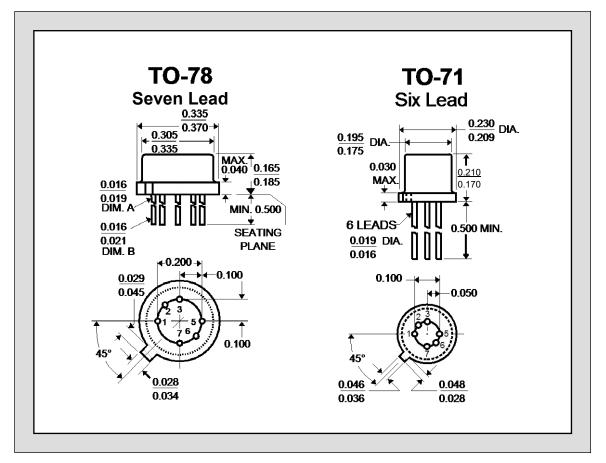
MONOLITHIC DUAL PICO AMPERE DIODES

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)


SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS	
BV _R	Reverse Breakdown Voltage	30			V	I _R = 1µA	
VF	Forward Voltage	0.8		1.1	v	I _F = 10mA	
	Devenue la cherre Overset		0.1			V _R =1V	
I _R	Reverse Leakage Current		2.0	10	pА	V _R = 10V	
I _{R1} -I _{R2}	Differential Leakage Current			3			
C _{rss}	Total Reverse Capacitance ²		0.75	1	pF	V _R = 10V, <i>f</i> = 1MHz	


Figure 1. Operational Amplifier Protection

Input Differential Voltage limited to 0.8V (typ) by Diodes ID100 D_1 and D_2 . Common Mode Input voltage limited by Diodes ID100 D_3 and D_4 to ±15V.


Figure 2. Sample and Hold Circuit

Typical Sample and Hold circuit with clipping. ID100 diodes reduce offset voltages fed capacitively from the ID100 switch gate.

STANDARD PACKAGE DIMENSIONS:

NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Design reference only, not 100% tested.
- 3. Pins 3 & 5 on ID100 and ID101 must not be connected, in any fashion or manner, to any circuit or node.

Improved Standard Products®

SD-SST210/214

N-CHANNEL LATERAL DMOS SWITCH

PART NUMBER	V _{(BR)DS} Min (V)	V _{(GS)th} Max (V)	r _{DS(on)} Max (Ω)	C _{rss} Max (pF)	ton Max (ns)
SD210DE	30	1.5	45 @ V _{GS} =10V	0.5	2
SD214DE	20	1.5	45 @ V _{GS} =10V	0.5	2
SST210	30	1.5	50 @ V _{GS} =10V	0.5	2
SST214	20	1.5	50 @ V _{GS} =10V	0.5	2

PRODUCT SUMMARY

Features

- Ultra-High Speed Switching—ton: 1ns
- Ultra-Low Reverse Capacitance: 0.2pF
- Low Guaranteed rDS @5V
- Low Turn-On Threshold Voltage
- N-Channel Enhancement Mode

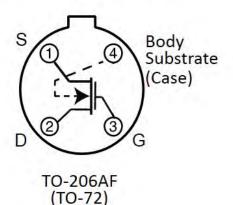
Description

The SD210DE/214 and SST210/214 are enhancement-mode MOSFETs designed for high speed low-glitch switching in audio, video and high-frequency applications. The SD214DE and SST214 are normally used for ±10-V analog switching. These MOSFETs utilize lateral construction to achieve low capacitance and ultra-fast switching speeds. These MOSFETs do not

Benefits

- High-Speed System Performance
- Low Insertion Loss at High Frequencies
- Low Transfer Signal Loss
- Simple Driver Requirement
- Single Supply Operation

Applications


- Fast Analog Switch
- Fast Sample-and-Holds
- Pixel-Rate Switching
- DAC Deglitchers
- High-Speed Driver

have a gate protection Zener diode which results in lower gate leakage and \pm voltage capability from gate to substrate. A polysilicon gate is featured for manufacturing reliability.

For similar products see: quad array—SD5000/5400 series, Zener protected—SD211DE/SST211 Series.

SD210DE, SD214DE

SST210, SST214

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Gate-Drain, Gate-Source Voltage	±40V	Source-Substrate Voltage	(SD210DE/SST210) 15V
Gate-Substrate Voltage	±30V		(SD210DE/SST210) 25V
Drain-Source Voltage	(SD210DE/SST210)	Drain Current	
	(SD214DE/SST214)	Lead Temperature (1/16" from ease for 10 seconds)	
Source-Drain Voltage	(SD210DE/SST210) 10V	Storage Temperature	65 to 150°C
	(SD214DE/SST214)	Operating Junction Temperature	
Drain-Substrate Voltage	(SD210DESST210)	Power Dissipation*	
	(SD214DE/SST214)		
		Note:	

* Derate 3mW/°C above 25°C

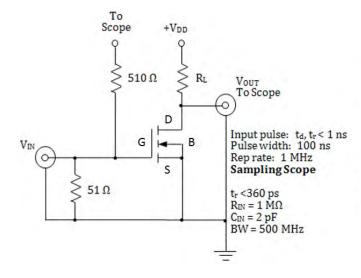
Specifications^a

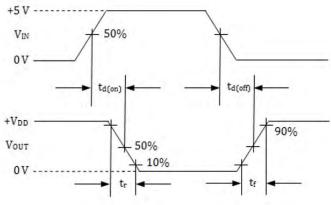
						LIM	ITS			
PARAMETER	SYMBOL	TES	от со	ONDITIONS	TYP		Series		Series	UNIT
						Min	Max	Min	Max	
Static	1	N(0)/ 1 404	35	20	r –		1	
Drain - Source Breakdown Voltage	V _{(BR)DS}		$V_{GS} = V_{BS} = 0V, I_D = 10 \mu A$ $V_{GS} = V_{BS} = -5V, I_D = 10 nA$			30 10		20		
Source - Drain Breakdown Voltage	V _{(BR)SD}	$V_{GS} = V_{BD} = -5V, I_D = 10 IIA$ $V_{GD} = V_{BD} = -5V, I_S = 10 IIA$			<u> </u>	10		20		N.
Drain - Substrate Breakdown Voltage	V _{(BR)DBO}		V _{GB} = 0V, I _D = 10 nA Source Open			15		25		V
Source - Substrate Breakdown Voltage	V _(BR) SBO	Vgi		/, I₅ = 10 μA in Open	35	15		25		
Drain – Source	I _{DS(off)}	$V_{GS} = V_{BS} = -5$	SV.	V _{DS} = 10V	0.4		10			
Leakage	105(011)	VGS - VBS JV		V _{DS} = 20V	0.9				10	nA
Source - Drain Leakage	I _{SD(off)}	$V_{GD} = V_{BD} = -5$	δV	$V_{SD} = 10V$ $V_{SD} = 20V$	0.5		10		10	
			,		10.001		. 100			۳۸
Gate Leakage	IGBS			$0V, V_{GB} = \pm 40V$	±0.001		±100		±100	рА
Threshold Voltage	$V_{\text{GS}(\text{th})}$	Vds		s, I _D = 1 μA , _{SB} = 0V	0.8	0.5	1.5	0.1	1.5	V
				V _{GS} = 5V (SD Series)	58		70		70	
			V _{GS} = 5V (SST Series)		60		75		75	
Drain – Source		V _{SB} = 0V		V _{GS} = 10V (SD Series)	38		45		45	
On-Resistance	r _{DS(on)}	$I_D = 1mA$		V _{GS} = 10V (SST Series)	40		50		50	Ω
				V _{GS} = 15V	30					
				V _{GS} = 20V	26					
				V _{GS} = 25V	24					

Specifications^a

						LIM	ITS			
PARAMETER	SYMBOL ^b	TEST CONDI	ΤΥΡ ^c	210 S	Series	214	Series	UNIT		
				Min	Max	Min	Max			
Dynamic										
		1/2 = 401/21/2 = 01/2	SD Series	11	10		10			
Forward	Ū	$V_{DS} = 10V, V_{SB} = 0V,$ $I_D = 20mA, f = 1kHz$	SST Series	10.5	9		9		mS	
Transconductance	gos	10 – 20111A, I – TRHZ	All	0.9						
Gate Node Capacitance	C(GS+GD+GB)			2.5		3.5		3.5		
Drain Node Capacitance	C(GD+DB)		SD Series	1.1		1.5		1.5		
Source Node Capacitance	C(GS+SB)	V_{DS} = 10V, f = 1MHz V_{GS} = V_{BS} = -15V		3.7		5.5		5.5	pF	
Reverse Transfer			SST Series	4.2						
Capacitance	C _{rss}		SD Series	0.2		0.5		0.5		
Switching										
Turn On Time	t _{D(on)}	00.0	Durle :	0.5		1		1		
Turn-On Time	tr	SD Series (0.6		1		1	20	
Turne Off Times	t _{D (off)}	$V_{SB} = 0V, V_{IN} 0 \text{ to } 5V_{DD} = 5V, R_{L}$		2					ns	
Turn-Off Time	tr	νυσ – σν, κι·	- 00012	6						

NOTES:


a. $T_A = 25^{\circ}C$ unless otherwise notes.


b. B is the body (substrate) and $V_{\left(\mathsf{BR}\right) }$ is breakdown voltage.

c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Switching Time Test Circuit

Improved Standard Products[®]

SD-SST211/213/215

N-CHANNEL LATERAL DMOS SWITCH ZENER PROTECTED

PRODUCT SUMMARY

PART NUMBER	V(BR)DS Min (V)	V _{(GS)th} Max (V)	r _{DS(on)} Max (Ω)	C _{rss} Max (pF)	ton Max (ns)
SD211DE	30	1.5	45 @ V _{GS} =10V	0.5	2
SD213DE	10	1.5	45 @ V _{GS} =10V	0.5	2
SD215DE	20	1.5	45 @ V _{GS} =10V	0.5	2
SST211	30	1.5	50 @ V _{GS} =10V	0.5	2
SST213	10	1.5	50 @ V _{GS} =10V	0.5	2
SST215	20	1.5	50 @ V _{GS} =10V	0.5	2

Features

- Ultra-High Speed Switching-IoN: 1ns
- Ultra-Low Reverse Capacitance: 0.2pF
- Low Guaranteed rDS @5V
- Low Turn-On Threshold Voltage
- N-Channel Enhancement Mode

Benefits

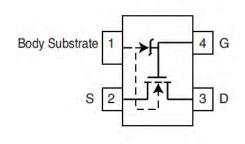
- High-Speed System Performance
- Low Insertion Loss at High Frequencies
- Low Transfer Signal Loss
- Simple Driver Requirement
- Single Supply Operation

Applications

- Fast Analog Switch
- Fast Sample-and-Holds
- Pixel-Rate Switching
- DAC Deglitchers
- High-Speed Driver

Description The SD211DE/SST211 series consists of enhancement-mode MOSFETs designed for high speed low-glitch switching in audio, video and high-frequency applications. The SD211 may be used for a ±5-V analog switching or as a high speed driver of the SD214. The SD214 is normally used for ±10-V analog switching. These MOSEETs utilize lateral construction to achieve low

capacitance and ultra-fast switching speeds. An integrated ZENER diode provides ESD protection. These devices feature a poly-silicon gate for manufacturing reliability.


For similar products see: quad array—SD5000/5400 series, non-Zener protection—SD210DE/214DE.

TOP VIEW SD211DE, SD213DE, SD215DE

TO-206AF (TO-72)

TOP VIEW SST211, SST213, SST215

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

rain, Gate Source Voltage	(SD211DE/SST211)30/25V (SD213DE/SST213)15/25V
	(SD215DE/SST215)25/30V
Gate-Substrate Voltage ^a	(SD211DE/SST211)0.3/25V
C C	(SD213DE/SST213)0.3/25V
	(SD215DE/SST215)0.3/30V
Drain-Source Voltage	(SD211DE/SST211)
	(SD213DE/SST213) 10V
	(SD215DE/SST215)
Voltage	(SD211DE/SST211) 10V
	(SD213DE/SST213) 10V
	(SD215DE/SST215)

Drain-Substrate Voltage	(SD211DE/SST211)
Source-Substrate Voltage	(SD215DE/SST215)
Duala Current	(SD213DE/SST213) 15V (SD215DE/SST215) 25V
Drain Current Lead Temperature (1/16" from ease for 10 seconds)	
Storage Temperature Operating Junction Temperature Power Dissipation	-65 to 150°C
Fower Dissipation	

Notes: a. Derate 3mW/°C above 25°C

Specifications^a

								LIN	IITS			
PARAMETER	SYMBOL ^b	TEST CO	NDITI	ONS ^b	TYP⁵	211 S	eries	213 5	Series	215 \$	Series	UNIT
						Min	Max	Min	Max	Min	Max	
Static												
Drain - Source	V _{(BR)DS}	$V_{GS} = V_{BS} = 0$			35	30						
Breakdown Voltage	V (BR)DS	$V_{GS} = V_{BS} = -\xi$	5V, I⊳	= 10 nA	30	10		10		20		
Source - Drain Breakdown Voltage	V _{(BR)SD}	$V_{GS} = V_{BD} = -$	5V, Is	s= 10 nA	22	10		10		20		V
Drain - Substrate Breakdown Voltage	V _{(BR)DBO}	V _{GB} = 0V, Source			35	15		15		25		V
Source - Substrate Breakdown Voltage	V _(BR) SBO	V _{GB} = 0V, Drain	l₅ = 1 Oper		35	15		15		25		
Drain – Source	I _{DS(off)}	$V_{CS} = V_{RS} = -\frac{\mu}{2}$	$V_{GD} = V_{BD} = -5V \qquad \frac{V_{SD}}{V_{SD}}$		0.4		10		10			
Leakage	103(011)	VG3 - VB3C			20V 0.9						10	
Source - Drain Leakage	I _{SD(off)}	$V_{GD} = V_{BD} = -\xi$			0.5		10		10		10	nA
					0.04		100		100			
Gate Leakage	IGBS	$V_{DB} = V_{SB} = 0$			0.01		100		100		100	
Threshold Voltage	$V_{\text{GS}(\text{th})}$	V _{DS} = V _{GS} , V _{SB}	, I⊳= s=0V	1 μA ,	0.8	0.5	1.5	0.1	1.5	0.1	1.5	V
			-	/ _{GS} = 5V D Series)	58		70		70		70	
				/ _{GS} = 5V ST Series)	60 75 75		75					
Drain – Source	r DS(on)	V _{SB} = 0V		_{GS} = 10V D Series)	38		45		45		45	Ω
On-Resistance	$I_DS(on)$ $I_D = 1m$	I _D = 1mA		_{GS} = 10V ST Series)	40		50		50		50	22
			Va		30							
			V	_{GS} = 20V	26							
			V	_{GS} = 25V	24							

Specifications^a

							LIM	IITS			
PARAMETER	SYMBOL ^b	TEST CON	ΤΥΡ ^ο	211 Series		213 Series		215 Series		UNIT	
					Min	Max	Min	Max			
Dynamic	Jynamic										
	g fs	V_{DS} = 10V, V_{SB}	SD Series	11	10		10		10		
Forward		= 0V, ,	SST Series	10.5	9		9		9		mS
Transconductance	g _{os}	I _D = 20mA, f = 1kHz	All	0.9							mo
Gate Node Capacitance	C(GS+GD+GB)			2.5		3.5		3.5		3.5	
Drain Node Capacitance	C(GD+DB)	V _{DS} = 10V, f =	SD Series	1.1		1.5		1.5		1.5	
Source Node Capacitance	C(GS+SB)	1MHz V _{GS} = V _{BS} = -		3.7		5.5		5.5		5.5	pF
Reverse Transfer	0	15V	SST Series	4.2							
Capacitance	C _{rss}		SD Series	0.2		0.5		0.5		0.5	
Switching											
Turn-On Time	t _{D(on)}	SD Sori		0.5		1		1		1	
	tr	SD Serie V _{SB} = 0V, V _{IN} 0 te		0.6		1		1		1	ns
Turn-Off Time	t _{D (off)}	$V_{DD} = 5V,$		2							115
	tr	vu – 0v,	TNL = 00032	6							

Notes:

a. $T_A = 25^{\circ}C$ unless otherwise notes.

b. B is the body (substrate) and $V_{(BR)}$ is breakdown voltage.

c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

SD5000/5001/5400/5401

QUAD N-CHANNEL LATERAL DMOS SWITCH ZENER PROTECTED

Improved Standard Products[®]

Product Summary

Part Number	V _{(BR)DS} Min (V)	V _{GS(th)} Max (V)	r _{DS(on)} Max (Ω)	C _{rss} Max (pF)	t _{on} Max (ns)
SD5000I	20	1.5	70 @ V _{GS} = 5 V	0.5	2
SD5000N	20	1.5	70 @ V _{GS} = 5 V	0.5	2
SD5001N	10	1.5	70 @ V _{GS} = 5 V	0.5	2
SD5400CY	20	1.5	75 @ V _{GS} = 5 V	0.5	2
SD5401CY	10	1.5	75 @ V _{GS} = 5 V	0.5	2

Features

- Quad SPST Switch with Zener Input Protection
- Low Interelectrode Capacitance and Leakage
- Ultra-High Speed Switching-ton: 1 ns
- Ultra-Low Reverse Capacitance: 0.2 pF
- Low Guaranteed $r_{DS} @ 5 \ V$
- Low Turn-On Threshold Voltage

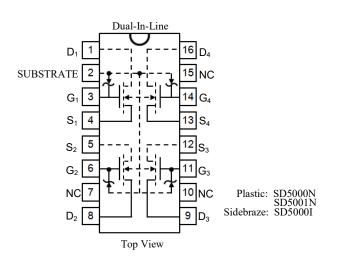
Benefits

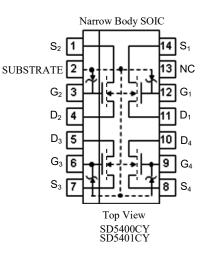
- High-Speed System Performance
- Low Insertion Loss at High Frequencies
- Low Transfer Signal Loss
- Simple Driver Requirement
- Single Supply Operation

Applications

- Fast Analog Switch
- Fast Sample-and-Holds
- Pixel-Rate Switching
- Video Switch
- Multiplexer
 - DAC Deglitchers
 - High-Speed Driver

Description


The SD5000/5400 series of monolithic switches features four individual double-diffused enhancement-mode MOSFETs built on a common substrate. These bidirectional devices provide low on-resistance and low interelectrode capacitances to minimize insertion loss and crosstalk.


Built on Siliconix' proprietary DMOS process, the SD5000/5400 series utilizes lateral construction to achieve low capacitance and

ultra-fast switching speeds. For manufacturing reliability, these devices feature poly-silicon gates protected by Zener diodes

The SD 5000/5400 are rated to handle $\pm 10\text{-V}$ analog signals, while the SD5001/5401 are rated for $\pm 5\text{-V}$ signals.

For similar products packaged in TO-206AF (TO-72) and TO-253 (SOT-143) see the SD211DE/SST211 series.

Absolute Maximum Ratings (T_A = 25°C Unless Otherwise Noted)

Gate-Drain, Gate-Source Voltage	
(SD5000, SD5400)	+30V/-25V
(SD5001, SD5401)	+25V/-15V
Gate-Substrate Voltage	(SD5000, SD5400)+30V/-0.3V
	(SD5001I, SD5401)+25V/-0.3V
Drain-Source Voltage	(SD5000, SD5400)20V
	(SD5001I, SD5401)10V
Drain-Source-Substrate Voltage	(SD5000, SD5400)25V
	(SD5001I, SD5401)15V

Drain Current		50 mA
Lead Temperature (1/16"	from case for 10 seconds)	
Storage Temperature		65 to 150°C
Operating Junction Temp	erature	55 to 150°C
Power Dissipation":	(Package)	
•	(each Device)	

Notes:

a. SD5000/SD5001I derate 5 mW/C above 25°C

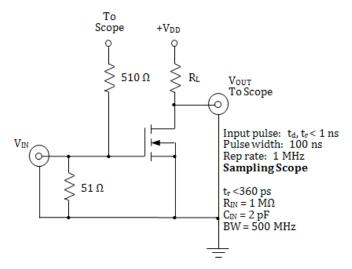
b. SD5400/SD5401 derate 4 mW/C above 25°C

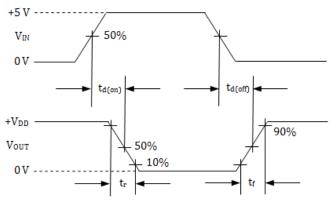
Specifications^a

					Limits				
					SD5000 SD5400			5001 5401	
Parameter	Symbol ^b	Test Conditions ^b			Min	Max	Min	Max	Unit
Static								•	•
Drain-Source Breakdown Voltage	V _{(BR)DS}	V _{GS} =V _{BS} =-5V	V, I _D =10nA	30	20		10		
Source-Drain Breakdown Voltage	V _{(BR)SD}	V _{GD} =V _{BD} =-5	V, Is=10nA	22	20		10		
Drain-Substrate Breakdown Voltage	V _{(BR)DBO}	V _{GB} =0 V, I _D =10µ	A, Source Open	35	25		15		V
Source-Substrate Breakdown Voltage	V _{(BR)SBO}	V _{GB} =0 V, I _S =10µ	A, Drain Open	35	25		15		
			V _{DS} = 10 V	0.4				10	
Drain-Source Leakage	$I_{DS(off)}$	$V_{GS} = V_{BS} = -5 V$	V _{DS} = 15 V	0.7					
			$V_{DS}=20 V$	0.9		10			
			V _{SD} = 10 V	0.5				10	nA
Source-Drain Leakage	$I_{SD(off)}$	$V_{GD} = V_{BD} = -5 V$	V _{SD} = 15 V	0.8]
			V _{SD} = 20 V	1		10			
Gate Leakage	I _{GBS}	$V_{DB} = V_{SB} = 0$	$V, V_{GB} = 30V$	0.01		100		100	
Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 1$	I μA , $V_{SB} = 0V$	0.8	0.1	1.5	0.1	1.5	V
			SD5000 Series $V_{GS} = 5 V$	58		70		70	
Durin Source On Registerios				SD5400 Series $V_{GS} = 5 V$	60		75		75
Drain-Source On-Resistance	r _{DS(on)}	$V_{SB} = 0 V$ $I_D = 1 mA$	$V_{GS} = 10 \text{ V}$	38					Ω
		ip i mit	$V_{GS} = 15 V$	30					
			$V_{GS} = 20 V$	26					
Resistance Match	$\Delta r_{DS(on)}$		$V_{GS} = 5 V$	1		5		5	
Dynamic	1	1							
Forward Transconductance	g_{fs}	$\begin{array}{l} V_{DS}=10 \ V \\ V_{SB}=0 \ V \end{array}$	SD5000 Series	12	10		10		mS
	0	$l_{\rm D} = 20 \text{ mA}$ f = 1 kHz	SD5400 Series	11	9		9		
Gate Node Capacitance	C _(GS+GD+GB)			2.5		3.5		3.5	
Drain Node Capacitance	C _(GD+DB)	$V_{DS} = 10 V$	SD5000 See	2.0		3		3	чE
Source Node Capacitance	C _(GS+SB)	$f = 1 \text{ MHz}$ $V_{GS} = V_{BS} = -15 \text{V}$	SD5000 Series	3.7		5		5	pF
Reverse Transfer Capacitance	C _{rss}			0.2		0.5		0.5	
Crosstalk		f = 3	kHz	-107					dB

Specifications^a

				Limits SD5000 SD5001				
					5000 5400	SD5 SD5		
Parameter	Symbol ^b	Test Conditions ^b	Typ ^c	Min	Max	Min	Max	Unit
Switching								
Turn-On Time	t _{d(on)}				1		1	
Tum-On Time	t _r	V_{SB} = 1-5 Vin, V_{GN} 0 to 5 V, R_G = 25 Ω	0.6		1		1	
Turn-Off Time	$t_{d(off)}$	$V_{DD} = 5 \text{ V}, \text{R}_{\text{L}} = 680 \Omega$	2					ns
	$t_{\rm f}$		6					


Notes:


a. $T_A = 25^{\circ}C$ unless otherwise noted.

b. B is the body (substrate) and $V_{(BR)}$ is breakdown.

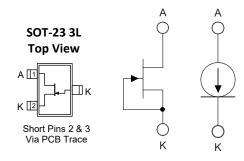
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Switching Time Test Circuit

NOTES:

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

DMCA


SST500 Series

Over 30 Years of Quality Through Innovation

Current Regulating Diodes

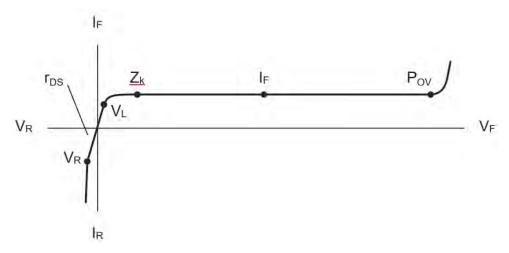
IDEAL CHOICE FOR TEST INSTRUMENTATION AND MEDICAL APPLICATIONS

FEATURES						
REPLACES SILICONIX/VISHAY SST502 SERIES						
WIDE CURRENT RANGE	0.19 to 5.6mA					
BIASING NOT REQUIRED	$V_{GS} = 0V$					
ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-55 to 150°C					
Junction Operating Temperature	-55 to 150°C					
Maximum Power Dissipation						
Continuous Power Dissipation ⁷	350mW					
Maximum Currents						
Forward Current	20mA					
Reverse Current	50mA					
Maximum Voltages						
Peak Operating Voltage	P _{OV} = 50V					

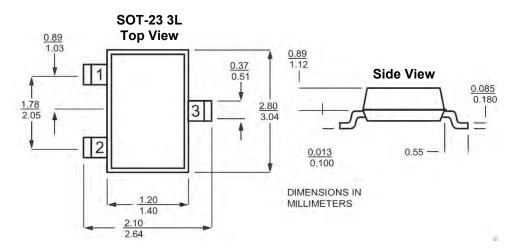
Package Photo

COMMON ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
Pov	Peak Operating Voltage ⁶	50			V	$I_F = 1.1I_{F(max)}^{b}$
V _R	Reverse Voltage		0.8		V	I _R =1mA
C _F	Forward Capacitance		1.5		pF	V _F = 25V, <i>f</i> = 1MHz


SPECIFIC ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

PART	Forward Current ³ I _F (mA)			mpedance⁴ MΩ)	Knee Impedance Z _k (MΩ)		Voltage⁵ (V)	
	V _F = 25V			V _F =	25V	V _F = 6V	$I_{F} = 0.$	8I _{F(min)}
	MIN	NOM	MAX	MIN	TYP	ТҮР	TYP	MAX
SST500	0.192	0.24	0.288	4.00	15	2.50	0.4	1.2
SST501	0.264	0.33	0.396	2.20	10	1.60	0.5	1.3
SST502	0.344	0.43	0.516	1.0	2.7	0.7	0.6	1.5
SST503	0.448	0.56	0.672	0.7	2.0	0.5	0.7	1.7
SST504	0.600	0.75	0.900	0.5	1.5	0.4	0.8	1.9
SST505	0.800	1.00	1.200	0.4	1.0	0.3	0.9	2.1
SST506	1.120	1.40	1.680	0.3	0.8	0.2	1.1	2.5
SST507	1.440	1.80	2.160	0.2	0.6	0.12	1.3	2.8
SST508	1.900	2.40	2.900	0.1	0.4	0.08	1.5	3.1
SST509	2.400	3.00	3.600	0.09	0.3	0.06	1.7	3.5
SST510	2.900	3.60	4.300	0.08	0.3	0.04	1.9	3.9
SST511	3.800	4.70	5.600	0.07	0.2	0.03	2.1	4.2


NOTES:

- Absolute maximum ratings are limiting values above which serviceability may be impaired. 1.
- Pulsed, t = 2ms. Steady State currents may vary. Pulsed, t = 2ms. Continuous currents may vary. 2. 3.
- 4. Pulsed, t = 2ms. Continuous impedances may vary.
- 5.
- Min V_F required to ensure $I_F = 0.8I_{F(min)}$. Max V_F where If = 1.1 x I_F max is guaranteed. Pulsed test ≤2mS. 6. Derate 2.8 m W/°C above 25°C.
- 7. Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

V-I Characteristics Current Regulating Diode

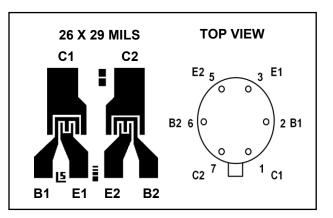
Packaging Details

Ordering Information

SST500 SOT-23 3L RoHS

Custom Part Call-Out

(Custom Parts Include SEL + 4 Digit Numeric Code)

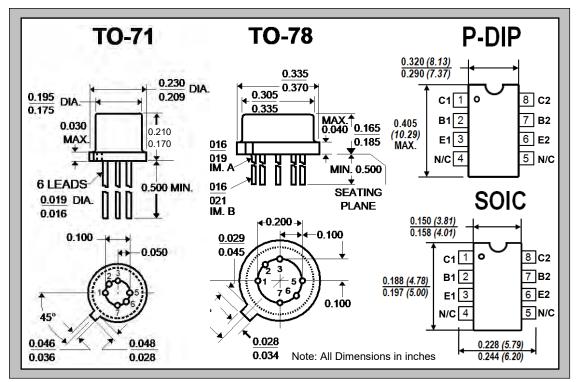

SST500 SOT-23 3L RoHS SELXXXX

Improved Standard Products[®]

FEATURES							
Direct Replacement for Intersil IT120 Series Pin for Pin Compatible							
ABSOLUTE MAXIMUM RATINGS <u>NOTE 1</u> (T _A = 25°C unless otherwise noted)							
I _C Collector-Current	Ic Collector-Current 10mA						
Maximum Temperatures							
Storage Temperature Range		-65	5°C to +150°C				
Operating Temperature Range	Operating Temperature Range -55°C to +150°C						
Maximum Power Dissipation	IDE	BOTH SIDES					
Device Dissipation T _A =25°C	250m	W	500mW				
Linear Derating Factor	2.3m\	N/°C	4.3W/°C				

IT120A IT120 IT121 IT122

MONOLITHIC DUAL NPN TRANSISTORS


ELECTRICAL CHARACTERISTICS T_A= 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	IT120A	IT120	IT121	IT122		UNITS	CONDITION	S
BV _{CBO}	Collector to Base Voltage	45	45	45	45	MIN.	V	I _C = 10μΑ	I _E = 0A
BVCEO	Collector to Emitter Voltage	45	45	45	45	MIN.	V	I _C = 10μΑ	I _B = 0A
BVEBO	Emitter-Base Breakdown Voltage	6.2	6.2	6.2	6.2	MIN.	V	I _E = 10μΑ	I _C = 0A <u>NOTE 2</u>
BVcco	Collector to Collector Voltage	60	60	60	60	MIN.	V	I _{cco} = 10µA	$I_B = I_E = 0A$
hfe	DC Current Gain	200	200	80	80	MIN.		Ic = 10μΑ	$V_{CE} = 5V$
		225	225	100	100	MIN.		I _c = 1.0mA	$V_{CE} = 5V$
V _{CE} (SAT)	Collector Saturation Voltage	0.5	0.5	0.5	0.5	MAX.	V	I _C = 0.5mA	I _B = 0.05mA
I _{EBO}	Emitter Cutoff Current	1	1	1	1	MAX.	nA	I _C = 0	$V_{EB} = 3V$
Ісво	Collector Cutoff Current	1	1	1	1	MAX.	nA	I _E = 0	V _{CB} = 45V
Сово	Output Capacitance ³	2	2	2	2	MAX.	pF	I _E = 0	$V_{CB} = 5V$
CC1C2	Collector to Collector Capacitance ³	2	2	2	2	MAX.	pF	$V_{CC} = 0$	
I _{C1C2}	Collector to Collector Leakage Current	±500	±500	±500	±500	MAX.	nA	$V_{CCO} = \pm 60V$	$I_B = I_E = 0A$
f⊤	Current Gain Bandwidth Product ³	220	220	180	180	MIN.	MHz	lc = 1mA	$V_{CE} = 5V$
NF	Narrow Band Noise Figure ³	3	3	3	3	MAX.	dB	lc = 100μA BW = 200Hz f=1KHz	V _{CE} = 5V , R _G = 10 KΩ

MATCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	IT120A	IT120	IT121	IT122		UNITS	CONDITIONS
VBE1-VBE2	Base Emitter Voltage Differential	1	2	3	5	MAX.	mV	$I_{C} = 10 \ \mu A$ $V_{CE} = 5V$
Δ (V _{BE1} -V _{BE2}) / Δ T	Base Emitter Voltage Differential	3	5	10	20	MAX.	μV/°C	$I_{C} = 10 \ \mu A$ $V_{CE} = 5V$
	Change with Temperature ³							$T = -55^{\circ}C$ to $+125^{\circ}C$
I _{B1} -I _{B2}	Base Current Differential	2.5	5	25	25	MAX.	nA	I _C = 10 μA V _{CE} = 5V

STANDARD PAKAGE DIMENSINS:

NOTES:

- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired.
- 2. The reverse base-to-emitter voltage must never exceed 6.2 volts; the reverse base-to-emitter current must never exceed 10 µA.
- 3. Not a production test.

LS3250A/B/C

Over 30 Years of Quality Through Innovation

Monolithic Dual Matched NPN Transistor

LOW NOISE AND THERMALLY MATCHED MONOLITHIC DUAL NPN TRANSISTOR

Absolute Maximum Ratings						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-65 to +150°C					
Junction Operating Temperature	-55 to +150°C					
Maximum Power Dissipation						
Continuous Power Dissipation	400mW					
Maximum Voltages						
Maximum Power Supply	45V					
Collector to Collector	50V					
Maximum Current						
Collector Current	50mA					

ТО-7 Тор \	-	-	78 6L View	
E2 (5) B2 (6) C2 (7)	3 E1 2 B1 1 C1	E2 (5) B2 (6) C2 (7)	③ E1 ② B1 ① C1	
SOT-23 Top View		IC 8L View	PDII ۲op ۱	-
1 [1] 6] C1 2 [2] 5] E1	C1 1 • B1 2 E1 3	8 C2 7 B2 6 E2	C1 1 ● B1 2 E1 3	8C2 7B2 6E2

NC 4

Features

- Low Voltage Noise, 2.7nV-typ at f=100Hz
- Low Vbe Matching 2mV-max
- Low Vbe Temperature Drift 3µV/°C-max
- High Current Gain 150-Min and 650-max
- High VCBO Breakdown Voltage-45V-min
- High VCEO Breakdown Voltage-45V-min
- High VCCO Breakdown Voltage +/-50V-min
- Refer to LS350/1/2 dual PNP for
- counterpart version

Benefits

- Unique Monolithic Dual Design Construction
- Improved System Noise Performance

в

E

B2 🖪

4] C2

- Wide Range of Parameter Operations
- High Frequency Performance
- Excellent Matching and Thermal Tracking
- Operation in High Voltage Applications

Applications

5 NC

• Differential and Preamplifiers

NC 4

5 NC

- Multivibrator Circuits
- Music Synthesizers
- Current Sources
- Clocking Networks
- Voltage Controlled Oscillators
- Frequency Division
- Photon Generators

Description

The LS3250A/B/C monolithic dual matched NPN transistor offers excellent matching characteristics and high frequency performance up to 600MHz gain bandwidth product. Low 2pF-max Cobo output capacitance further improves frequency characteristics and decreases signal distortion at the output.

Tight current gain matching and high current gain, make the LS3250 an ideal choice for accurate current biasing and mirroring circuits and designs. LS3250 output stages do not need considerable error correction, due to their higher transconductance and have a positive temperature coefficient of current (lb and lc).

Low noise performance, low offset voltage and high bandwidth, make the LS3250 ideal for differential input stages and pre-

amplifier applications.

Due to its high breakdown specifications, the LS3250 is suitable in high voltage applications requiring up to 45VMax. In addition to the very small outline SOT-23 6L package, the LS3250 is available in the TO-78 6L, TO-71 6L, PDIP 8L and SOIC 8L packages.

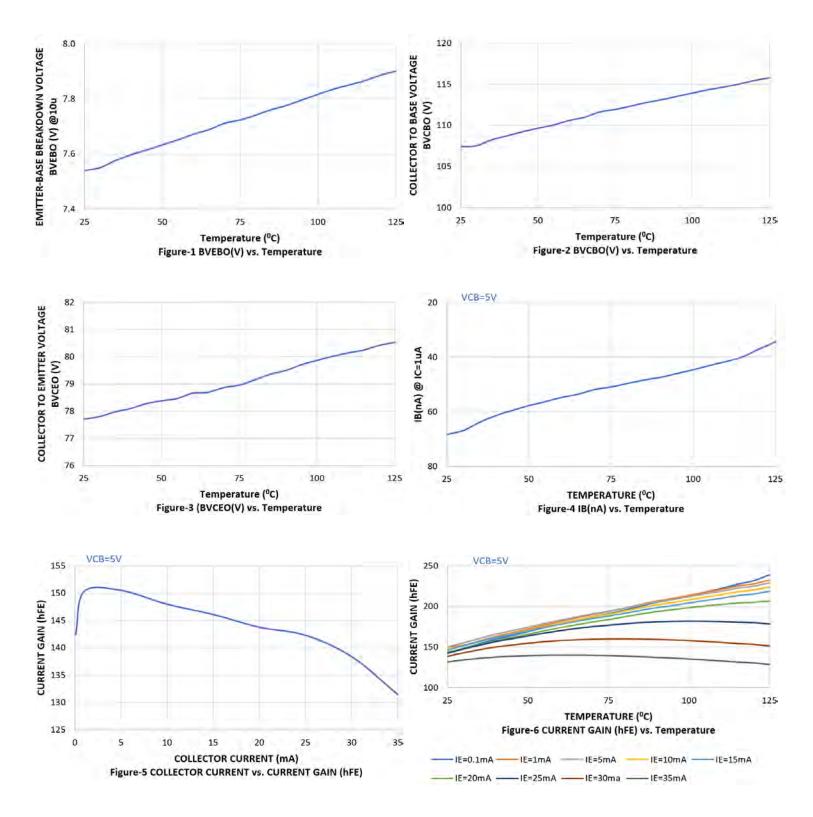
Furthermore, the LS3250 is offered with custom electrical specifications called SELXXXX. Contact our factory for modified electrical specifications for these special versions of the LS3250 SELXXXX.

Refer to the LS350/1/2 dual PNP for the counterpart version.

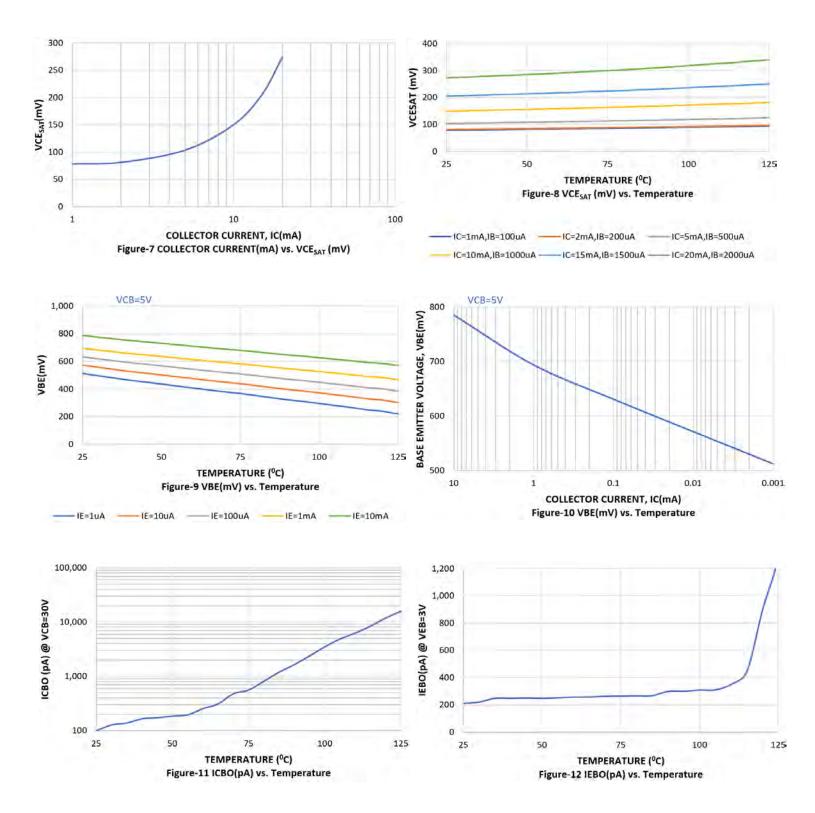
Electrical Characteristics @ 25 °C (Unless Otherwise Stated)

		LS3	250A	LS3	250B	LS3250C			
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
VBE1-VBE2	Base to Emitter Voltage Differential	-	2	-	5	-	10	mV	Ic = 10μΑ, V _{CE} = 5V
$\frac{\left V_{\text{BE1}}-V_{\text{BE2}}\right }{\Delta T}$	Base to Emitter Voltage Differential Change with Temperature	-	3	-	5	-	15	µV/°C	$I_{C} = 10\mu A$, $V_{CE} = 5V$ $T_{A} = -40^{\circ}C$ to +85°C
В1-В2	Base Current Differential	-	10	-	10	-	10	nA	I _C = 10μΑ, V _{CE} = 5V
$\frac{\left I_{B1}-I_{B2}\right }{\Delta T}$	Base Current Differential Change with Temperature	-	0.5	-	0.5	-	1.0	nA/°C	$I_{C} = 10\mu A$, $V_{CE} = 5V$ $T_{A} = -40^{\circ}C$ to +85°C
hfe1/ hfe2	Current Gain Differential	-	10	-	10	-	15	%	Ic = 1mA, V _{CE} = 5V
BV _{CBO}	Collector to Base Breakdown Voltage	45	-	40	-	20	-		$I_{C} = 10 \mu A, I_{E} = 0A$
BVCEO	Collector to Emitter Breakdown Voltage	45	-	40	-	20	-		I _C = 10mA, I _B = 0
BV _{cco}	Collector to Collector Breakdown Voltage	±50	-	±50	-	±50	-	V	$I_C = \pm 1\mu A$, $I_E = I_B = 0A$
BV _{EBO}	Emitter to Base Breakdown Voltage ³	6.0	-	6.0	-	6.0	-		I _E = 10μΑ, I _C = 0Α
VCE(SAT)	Collector to Emitter Saturation Voltage	-	0.35	-	0.35	-	1.2		I_C = 10mA, I_B = 1mA
		150	-	100	-	50	-		Ic = 1mA, V _{CE} = 5V
h _{FE}	DC Current Gain	150	650	80	-	40	-	-	I_{C} = 10mA, V_{CE} = 5V
		125	-	60	-	30	-		I_C = 35mA, V_{CE} = 5V
Ісво	Collector Cutoff Current	-	0.35	I	0.35	-	-		$I_E = 0A, V_{CB} = 30V$
ICBO	Collector Cuton Current	-	-	-	-	-	0.2	nA	$I_E = 0A, V_{CB} = 20V$
I _{EBO}	Emitter Cutoff Current	-	0.35	-	0.35	-	0.35		$I_E = 0A, V_{CB} = 3V$
I _{C1C2}	Collector to Collector Leakage Current	-	±1	I	±1	-	±1	μA	V_{CC} = ±50V, I_E = I_B = 0A
Сово	Output Capacitance	-	2	-	2	-	2	рF	I _E = 0A, V _{CB} = 10V
fт	Gain Bandwidth Product (Current)	-	600	-	600	-	600	MHz	Ic = 1mA, V _{CE} = 5V
en	Noise Voltage	-	2.7typ	-	2.7typ	-	2.7typ	nV/√Hz	V _{CE} ==5V, IC=2mA F=100Hz, NBW=1Hz
en	Noise Voltage	-	0.7typ	-	0.7typ	-	0.7typ	nV/√Hz	V _{CE} ==5V, IC=2mA F=1kHz, NBW=1Hz

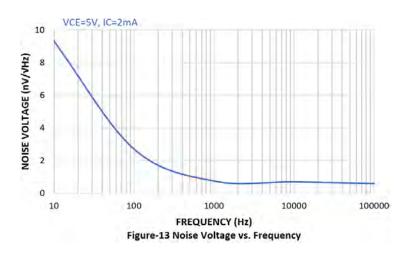
Notes


1. Absolute maximum ratings are limiting values above which serviceability may be impaired.

2. Pulse Test: PW \leq 300µs, Duty Cycle \leq 3%

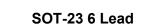

3. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only.

LS3250 Series



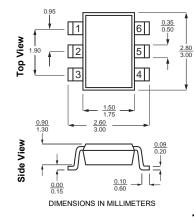
LS3250 Series

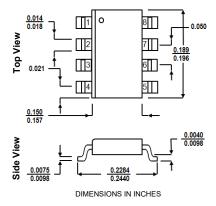
Typical Characteristics Continued

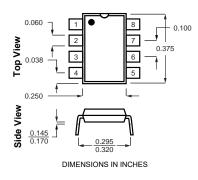


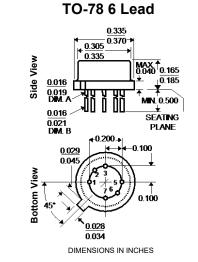
Typical Characteristics Continued

Ordering Information

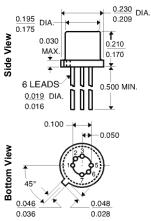

Standard Part Call-Out
LS3250A/B/C TO-71 6L RoHS
LS3250A/B/C TO-78 6L RoHS
LS3250A/B/C PDIP 8L RoHS
LS3250A/B/C SOIC 8L RoHS
LS3250A/B/C SOT-23 6L RoHS
Custom Part Call-out Custom parts include SEL+4 digit numeric code
LS3250A/B/C TO-71 6L RoHS SELXXXX
LS3250A/B/C TO-78 6L RoHS SELXXXX
LS3250A/B/C TO-78 6L RoHS SELXXXX


Package Dimensions




SOIC-A 8 Lead

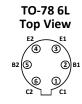
PDIP 8 Lead



TO-71 6 Lead

DIMENSIONS IN INCHES

LS310/311/312/313


Over 30 Years of Quality Through Innovation

Monolithic Dual Matched NPN Transistor

LOW NOISE AND THERMALLY MATCHED MONOLITHIC DUAL NPN TRANSISTOR

Absolute Maximum Ratings						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-65 to +150°C					
Junction Operating Temperature	-55 to +150°C					
Maximum Power Dissipation						
Continuous Power Dissipation	400mW					
Maximum Voltages						
Maximum Power Supply (LS312, see VCEO for others)	60V					
Collector to Collector (LS312, see VCEO for others)	60V					
Maximum Current						
Collector Current	40mA					

TO-71 6L TO Top View Top B2 2 2 2 1 B2 3 6 1 1 2 3 2 3

SOT-23 Top View	SOIC Top Vie	-	PDIP Top V	-
B1 1 6 C1 E2 2 5 E1 B2 3 4 C2	C1 1 B1 2 E1 3 NC 4	8 C2 7 B2 6 E2 5 NC	C1 1 B1 2 E1 3 NC 4	8 C2 7 B2 6 E2 5 NC

Features

- Low Voltage Noise, 1.8nV/√Hz-typ at f=1kHz, IC=100µA
- Low Vbe Matching 0.5mV-max, 0.2mV-typ (LS312)
- Low Vbe Temperature Drift 0.5 μV/°C-typ (LS312)
- High Current Gain 400-Min (LS313)
- High VCBO Breakdown Voltage-60V-min (LS312)
- High VCEO Breakdown Voltage-60V-min (LS312)
- High VCCO Breakdown Voltage +/-60V-min
- Dual PNP Counterpart Version: LS350/1/2

Benefits

- Unique Monolithic Dual Design
 Construction
- Improved System Noise Performance
- Wide Range of Parameter Operations
- Excellent Base-Emitter Voltage Differential (ΔVBE) and Drift
- Excellent Base Current Differential (IB1-IB2) and Drift
- High Frequency Performance
- Excellent Matching and Thermal Tracking
- High Voltage Operation-60V-min (LS312)

Applications

- Input Differential and Preamplifier Stages
- Multivibrator Circuits
- Music Synthesizers
- Current Sources
- Discreate Operational and Instrumentation Amplifiers
- Clocking Networks
- Voltage Controlled Oscillators
- Frequency Division

Description

The LS310/11/12/13 monolithic dual matched NPN transistors offer excellent matching characteristics and low voltage noise (refer to figure-14 for details.)

Low 2pF-max Cobo output capacitance further improves frequency characteristics and decreases signal distortion at the output. Low noise performance, low offset voltage and high bandwidth, make the products ideal for differential input stages and preamplifier applications.

Tight current gain matching, high current gain and high breakdown make the LS312 and LS313 an ideal choice for signal amplifying, accurate current biasing and mirroring circuits and designs.

LS310/11/12/13 output stages need very little error correction,

due to their higher transconductance and have a positive temperature coefficient of current (lb and lc).

Due to high breakdown specifications, the products are suitable in high voltage applications requiring up to 60VMax. In addition to very small outline SOT-23 6L package, these products are available in TO-78 6L, TO-71 6L, PDIP 8L and SOIC 8L packages.

The LS310/11/12/13 is offered with custom electrical specifications called SELXXXX. Contact the factory for modified electrical specifications for these special versions of the LS310/11/12/13 SEL-XXXX.

Refer to LS350/1/2 products for dual PNP counterpart versions.

Electrical Characteristics @ 25 °C (Unless Otherwise Stated)

SYMBOL	CHARACTERISTICS	LS310	LS311	LS312	LS313		UNITS	CONDITIONS
ВУсво	Collector to Base Voltage	25	45	60	45	MIN.	V	I _C = 10μΑ, I _E = 0
BV _{CEO}	Collector to Emitter Voltage	25	45	60	45	MIN.	V	I _C = 1mA, I _B = 0
BVEBO	Emitter-Base Breakdown Voltage	6.0	6.0	6.0	6.0	MIN.	V	I _E = 10µA, I _C = 0
BVcco	Collector to Collector Voltage	45	45	60	45	MIN.	V	$I_{C} = 10\mu A$, $I_{E} = I_{B} = 0A$
h _{FE}	DC Current Gain	150	150	200	400 1000	MIN. MAX.		Ic = 10μΑ, V _{CE} = 5V
h _{FE}	DC Current Gain	150	150	200	400	MIN.		$I_{C} = 100 \mu A$, $V_{CE} = 5V$
hfe	DC Current Gain	150	150	200	400	MIN.		Ic = 1mA, V _{CE} = 5V
V _{CE} (SAT)	Collector Saturation Voltage	0.25	0.25	0.25	0.25	MAX.	V	$I_{C} = 1mA, I_{B} = 0.1mA$
Ісво	Collector Cutoff Current	0.2	0.2	0.2	0.2	MAX.	nA	$I_E = 0, V_{CB} = 5V$
I _{EBO}	Emitter Cutoff Current	0.2	0.2	0.2	0.2	MAX.	nA	$I_{\rm C} = 0, V_{\rm EB} = 3V$
Сово	Output Capacitance	2	2	2	2	MAX.	pF	I _E = 0, V _{CB} = 5V, f = 1MHz
Cc1c2	Collector to Collector Capacitance	2	2	2	2	MAX.	pF	V _{CC} = 0V
Ic1c2	Collector to Collector Leakage Current	1.0	1.0	1.0	1.0	MAX.	μA	V _{CC} = 30V
f⊤	Current Gain Bandwidth Product	200	200	200	200	MIN.	MHz	I _C = 1mA, V _{CE} = 5V
en	Voltage Noise	1.3	1.3	1.3	1.3	TYP.	nV/√Hz	VCE = 5V, IC = 1mA F = 1kHz, NBW = 1Hz
en	Voltage Noise	1.5	1.5	1.5	1.5	TYP.	nV/√Hz	VCE = 5V, IC = 1mA f = 10Hz, NBW = 1Hz
en	Voltage Noise	1.8	1.8	1.8	1.8	TYP.	nV/√Hz	VCE = 5V, IC = 100µA F = 1kHz, NBW = 1Hz
en	Voltage Noise	3.8	3.8	3.8	3.8	TYP.	nV/√Hz	VCE = 5V, IC = 100µA F = 10Hz, NBW = 1Hz

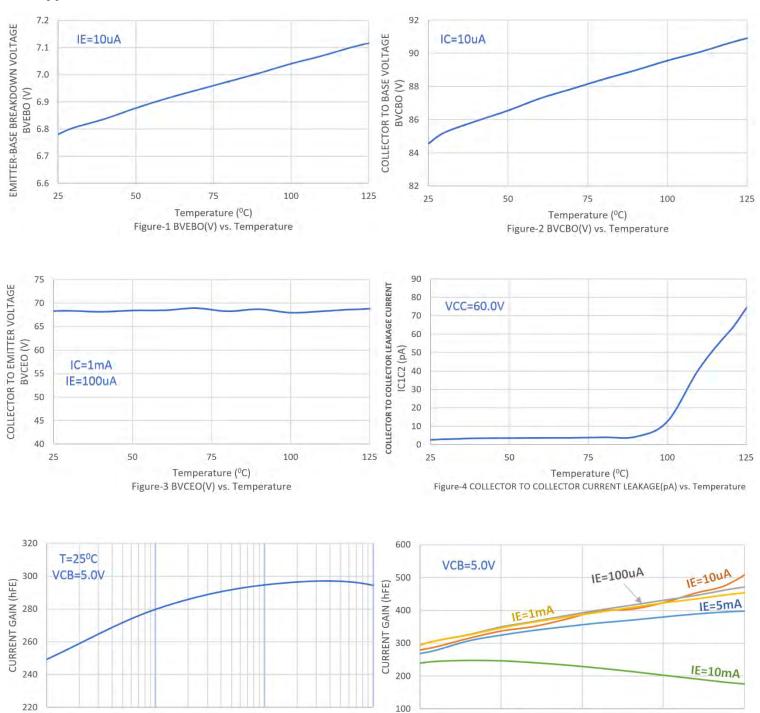
Notes

1. Absolute maximum ratings are limiting values above which serviceability may be impaired.

2. Pulse Test: PW ≤ 300 μ s, Duty Cycle ≤ 3%

3. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only.

LS310 Series


0.001

0.01

0.1

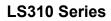
COLLECTOR CURRENT (mA)

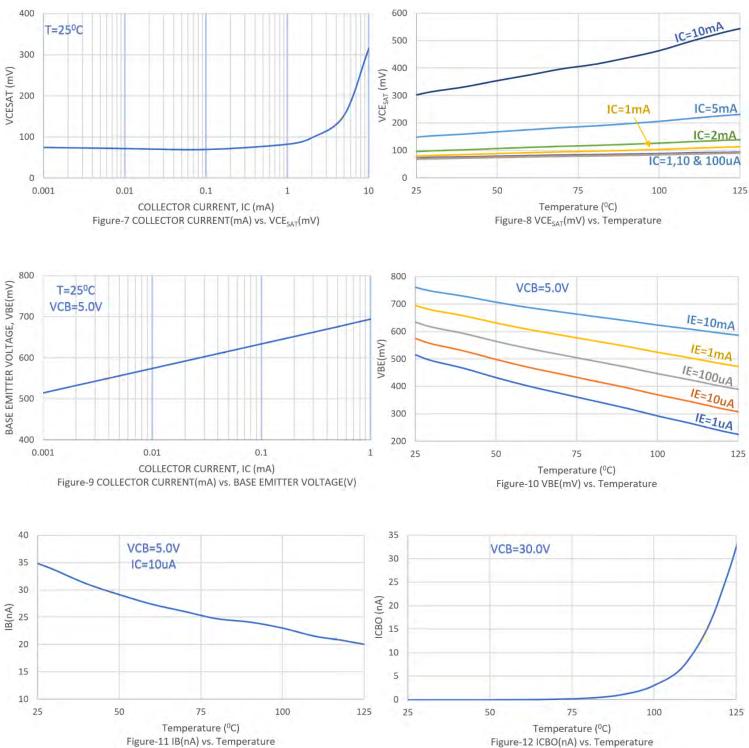
Figure-5 COLLECTOR CURRENT vs. CURRENT GAIN (hFE)

Typical Characteristics

Temperature (⁰C) Figure-6 CURRENT GAIN(hFE) vs. Temperature

75

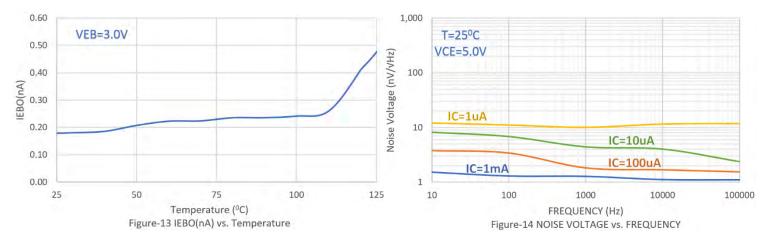

1


25

50

100

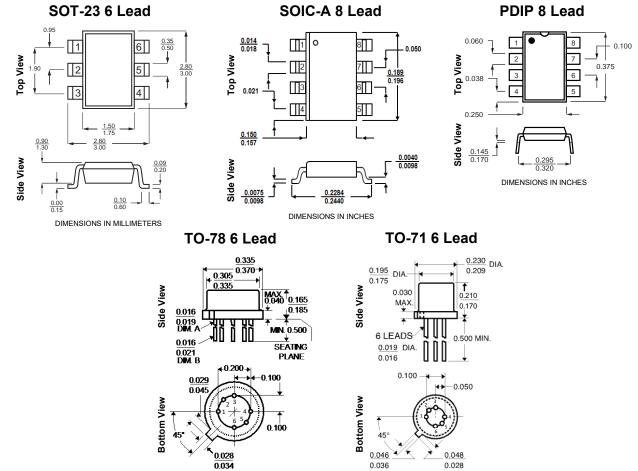
125



Typical Characteristics Continued

Figure-12 ICBO(nA) vs. Temperature

LS310 Series


Typical Characteristics Continued

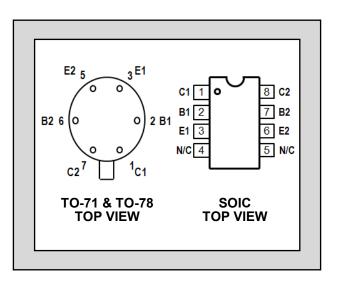
Ordering Information

Standard Part Call-Out
LS310/311/312/313 TO-71 6L RoHS
LS310/311/312/313 TO-78 6L RoHS
LS310/311/312/313 PDIP 8L RoHS
LS310/311/312/313 SOIC 8L RoHS
LS310/311/312/313 SOT-23 6L RoHS
Custom Part Call-out
Custom Parts Include SEL+4 Digit Numeric Code
Custom Parts Include SEL+4 Digit Numeric Code LS310/311/312/313 TO-71 6L RoHS SELXXXX
LS310/311/312/313 TO-71 6L RoHS SELXXXX
LS310/311/312/313 TO-71 6L RoHS SELXXXX LS310/311/312/313 TO-78 6L RoHS SELXXXX

LS310 Series

Package Dimensions

DIMENSIONS IN INCHES

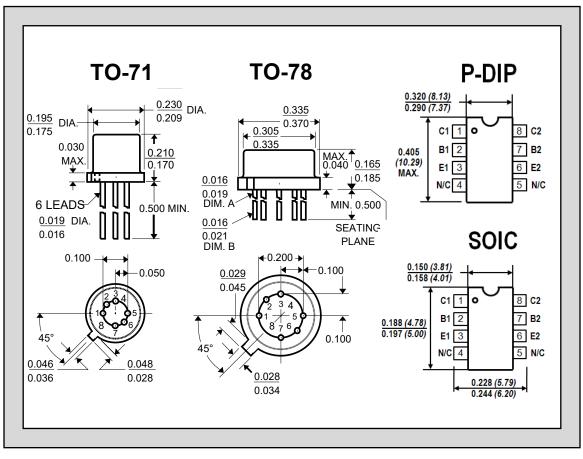

DIMENSIONS IN INCHES

Improved Standard Products[®]

FEATUR	FEATURES						
VERY H	IGH GAIN	h _{FE} 2000 @ 1.0μΑ ΤΥΡ.					
LOW OU	JTPUT CAPACITANCE	С _{ово} 2.0рF					
TIGHT \	/BE MATCHING	IV _{BE1} -V _{BE2} I=	0.2mV TYP.				
HIGH f⊤		100 MHz					
ABSOL	UTE MAXIMUM RATING	S <u>NOTE 1</u>					
@ 25 °C	@ 25 °C (unless otherwise stated)						
lc	Collector Current	5mA					
Maximu	m Temperatures						
Storage	Temperature	-55 to	+150 °C				
Operatir	ng Junction Temperature	-55 to	+150 °C				
Maximu	m Power Dissipation	ONE SIDE	BOTH SIDES				
Device [Dissipation @ Free Air	250mW	500mW				
Linear D	erating Factor	2.3mW/°C 4.3mW/°C					

LS301 LS302 LS303

HIGH VOLTAGE SUPER-BETA MONOLITHIC DUAL NPN TRANSISTORS


ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	LS301	LS302	LS303		UNITS	CONDITIONS
BV _{CBO}	Collector to Base Voltage	18	35	10	MIN.	V	$I_{C} = 10 \mu A$ $I_{E} = 0$
BV _{CEO}	Collector to Emitter Voltage	18	35	10	MIN.	V	I _C = 1mA I _B = 0
BV _{EBO}	Emitter-Base Breakdown Voltage	6.0	6.0	6.0	MIN.	V	I _E = 10μA I _C = 0 <u>NOTE 2</u>
BVcco	Collector To Collector Voltage	80	80	20	MIN.	V	$I_C = 1\mu A$ $I_E = I_B = 0$
h _{FE}	DC Current Gain	2000	1000	2000	TYP.		I _C = 1μA V _{CE} = 5V
h _{FE}	DC Current Gain	2000	1000	2000	MIN.		I _C = 10μA V _{CE} = 5V
hfe	DC Current Gain	2000	1000	2000	TYP.		I _C = 500µA V _{CE} = 5V
V _{CE} (SAT)	Collector Saturation Voltage	0.5	0.5	0.5	MAX.	V	$I_C = 1mA$ $I_B = 0.1mA$
Ісво	Collector Cutoff Current	100	100	100	MAX.	pА	I _E = 0 V _{CB} = <u>NOTE 3</u>
I _{EBO}	Emitter Cutoff Current	0.2	0.2	0.2	MAX.	pА	I _E = 0 V _{EB} = 3V
Сово	Output Capacitance	2	2	2	MAX.	pF	I _E = 0 V _{CB} = 1V
CC1C2	Collector to Collector Capacitance	2	2	2	MAX.	pF	V _{CC} = 0
Ic1c2	Collector to Collector Leakage Current	1.0	1.0	1.0	MAX.	μA	V _{CC} = <u>NOTE 4</u> , I _E = I _B = 0
f⊤	Current Gain Bandwidth Product	100	100	100	MIN.	MHz	I _C = 200µA V _{CE} = 5V
NF	Narrow Band Noise Figure	3	3	3	MAX.	dB	I _C = 10μA V _{CE} = 3V
							BW = 200Hz R _G = 10K
							f = 1KHz

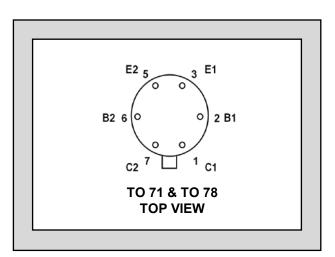
MATCHING CHARACTERISTICS

SYMBOL	CHARACTERISTIC	LS301	LS302	LS303		UNITS	CONDITIONS
IV _{BE1} -V _{BE2} I	Base Emitter Voltage Differential	0.2	0.2	0.2	TYP.	mV	Ic = 10μA V _{CE} = 5V
		1	1	1	MAX.	mV	
I(V BE1-VBE2)I/°C	Base Emitter Voltage Differential	1	1	1	TYP.	µV/°C	I _C = 10μA V _{CE} = 5V
	Change with Temperature	5	5	5	MAX.	µV/°C	T = 55°C to +125°C
ll _{B1} - l _{B2} l	Base Current Differential	0.5	1	0.5	TYP.	nA	I _C = 10μA V _{CE} = 1V
		1	5	1.5	MAX.	nA	I _C = 10μA V _{CE} = 5V
hfe1/hfe2	DC Current Gain Differential	5	5	5	TYP.	%	I _C = 10μA V _{CE} = 5V

STANDARD PACKAGE DIMENSIONS:

NOTES:

- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired
- 2. The reverse base-to-emitter voltage must never exceed 6.0 volts; the reverse base-to-emitter current must never exceed 10 µAmps.
- 3. For LS301 & LS302: V_{CB} =10V; for LS303: V_{CB} =5V
- 4. For LS301 & LS302: V_{CC} =±80V; for LS303: V_{CC} =±20V

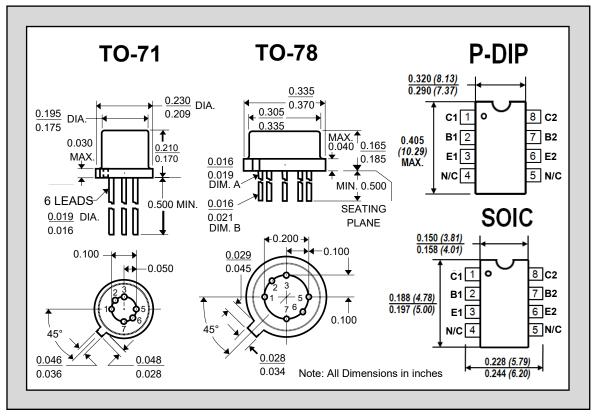

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Improved Standard Products[®]

FEATURE	FEATURES					
LOG CON	FORMANCE	∆re	∆re =1 TYP.			
ABSOLUTE MAXIMUM RATINGS <u>NOTE 1</u> (T _A = 25°C unless otherwise noted)						
lc	Collector-Current	10mA				
Maximum	Temperatures					
Storage Te	emperature Range		-55	5°C to +150°C		
Operating	Junction Temperature	•	-55	5°C to +150°C		
Maximum Power Dissipation ONE SIDE BOTH SIDES						
Device Dis	sipation T _A =25°C	۱W	500mW			
Linear Der	ating Factor	2.3m	W/°C	4.3mW/°C		

LS318 LOG CONFORMANCE

MONOLITHIC DUAL


ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	LS318		UNITS	CONDITIONS
∆re	Log Conformance	1.5	MAX.	Ω	I _C = 10-100-1000μA V _{CE} = 5V
ВVсво	Collector-Base Breakdown Voltage	25	MIN.	V	$I_C = 10\mu A$ $I_E = 0A$
BV _{CEO}	Collector to Emitter Voltage	25	MIN.	V	$I_{C} = 100 \mu A$ $I_{B} = 0 A$
BVEBO	Emitter-Base Breakdown Voltage	6.0	MIN.	V	I _E = 10μA I _C = 0A <u>NOTE 2</u>
BV _{cco}	Collector to Collector Voltage	45	MIN.	V	$I_{C} = 10\mu A$ $I_{B} = I_{E} = 0A$
h _{FE}	DC Current Gain	150	MIN.		I _C = 10μA V _{CE} = 5V
		600	MAX.		
h _{FE}	DC Current Gain	150	MIN.		I _C = 100μA V _{CE} = 5V
		600	MAX.		
h _{FE}	DC Current Gain	150	MIN.		I _C = 1mA V _{CE} = 5V
VCE(SAT)	Collector Saturation Voltage	0.25	MAX.	V	Ic = 1mA I _B = 0.1 mA
Ісво	Collector Cutoff Current	0.2	MAX.	nA	I _E = 0A V _{CB} = 20V
I _{EBO}	Emitter Cutoff Current	0.2	MAX.	nA	I _C = 0A V _{EB} = 3V
Сово	Output Capacitance	1.8		pF	I _E = 0A V _{CB} = 3V f=1MHz <u>NOTE 3</u>
C _{C1C2}	Collector to Collector Capacitance	1.8		pF	V _{CC} = 0V f=1MHz <u>NOTE 3</u>
Ic1c2	Collector to Collector Leakage Current	0.5	MAX.	μA	$V_{CC} = \pm 45V$ $I_B = I_E = 0A$
f⊤	Current Gain Bandwidth Product	220		MHz	Ic = 1mA V _{CE} = 5V <u>NOTE 3</u>
NF	Narrow Band Noise Figure	3	MAX.	dB	$ I_{\rm C} = 100 \mu A V_{\rm CE} = 5V {\rm NOTE \ 3} \\ BW = 200 Hz, \ R_{\rm G} = 10 \ {\rm K} \\ f=1 {\rm KHz} $

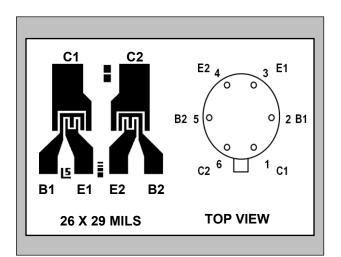
SYMBOL	CHARACTERISTIC	LS318		UNITS	CONDITIONS					
VBE1-VBE2	Base Emitter Voltage Differential	0.4	TYP.	mV	I _C = 10 μA V _{CE} = 5V					
		1	MAX.	mV						
(V _{BE1} -V _{BE2})/°C	Base Emitter Voltage Differential	1	TYP.	μV/°C	I _C = 10 μA V _{CE} = 5V					
	Change with Temperature				T _A = -55°C to +125°C					
I _{B1} -I _{B2}	Base Current Differential	10	MAX.	nA	I _C = 10 μA V _{CE} = 5V					
(I _{B1} -I _{B2}) /ºC	Base Current Differential	0.4	TYP.	nA/⁰C	I _C = 10 μA V _{CE} = 5V					
	Change with Temperature				T _A = -55°C to +125°C					
hfe1/hfe2	DC Current Gain Differential	5	TYP.	%	I _C = 10 μA V _{CE} = 5V					

MATCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

STANDARD PACKAGE DIMENSIONS:

NOTES:

- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired.
- 2. The reverse base-to-emitter voltage must never exceed 6.2 volts; the reverse base-to-emitter current must never exceed 10 μ A.
- 3. Not tested; guaranteed by design.
- 4. All MIN/TYP/MAX values are absolute numbers. Negative signs indicate electrical polarity only.

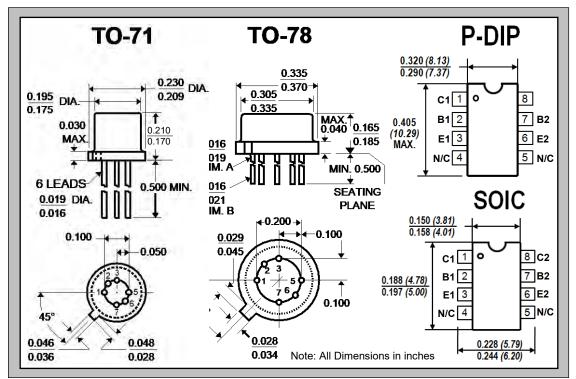

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Improved Standard Products[®]

FEATURE	FEATURES					
Direct Replacement for Intersil IT130 Series Pin for Pin Compatible						
ABSOLUTE MAXIMUM RATINGS <u>NOTE 1</u> (T _A = 25°C unless otherwise noted)						
lc	Collector-Current -10mA					
Maximum	Temperatures					
Storage Te	emperature Range		-65	5°C to +150°C		
Operating	Junction Temperature	!	-55	5°C to +150°C		
Maximum Power Dissipation ONE SIDE BOTH SIDES						
Device Dis	Device Dissipation T _A =25°C 250mW 500mW					
Linear Der	ating Factor	2.3m	N/°C	4.3W/°C		

IT130A IT130 IT131 IT132

MONOLITHIC DUAL PNP TRANSISTORS


ELECTRICAL CHARACTERISTICS T_A= 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	IT130A	IT130	IT131	IT132		UNITS	CONDITIONS
BV _{CBO}	Collector to Base Voltage	-45	-45	-45	-45	MIN.	V	$I_{C} = -10 \mu A$ $I_{E} = 0 A$
BVCEO	Collector to Emitter Voltage	-45	-45	-45	-45	MIN.	V	$I_{C} = -10 \mu A$ $I_{B} = 0 A$
BV_{EBO}	Emitter-Base Breakdown Voltage	-6.2	-6.2	-6.2	-6.2	MIN.	V	$I_E = -10\mu A$ $I_C = 0A$ <u>NOTE 2</u>
BVcco	Collector to Collector Voltage	±60	±60	±60	±60	MIN.	V	$I_{CCO} = \pm 10 \mu A$ $I_B = I_E = 0 A$
h _{FE}	DC Current Gain	200	200	80	80	MIN.		$I_{C} = -10 \mu A$ $V_{CE} = -5V$
		225	225	100	100	MIN.		Ic = -1.0mA V _{CE} = -5V
V _{CE} (SAT)	Collector Saturation Voltage	-0.5	-0.5	-0.5	-0.5	MAX.	V	I_{C} = -0.5mA I_{B} = -0.05mA
I _{EBO}	Emitter Cutoff Current	-1	-1	-1	-1	MAX.	nA	$I_{\rm C} = 0$ A $V_{\rm EB} = -3$ V
Ісво	Collector Cutoff Current	-1	-1	-1	-1	MAX.	nA	I _E = 0A V _{CB} = -45V
Сово	Output Capacitance ⁴	2	2	2	2	MAX.	pF	$I_E = 0A$ $V_{CB} = -5V$
CC1C2	Collector to Collector Capacitance ⁴	4	4	4	4	MAX.	pF	V _{CC} = 0V
Ic1c2	Collector to Collector Leakage Current	±500	±500	±500	±500	MAX.	nA	$V_{CC} = \pm 60V$, $I_B = I_E = 0A$
f⊤	Current Gain Bandwidth Product ⁴	110	110	90	90	MIN.	MHz	Ic = -1mA Vce = -5V
NF	Narrow Band Noise Figure ⁴	3	3	3	3	MAX.	dB	$I_{C} = -100 \mu A V_{CE} = -5V$
								BW = 200Hz, $R_G = 10 \text{ K}\Omega$
								f=1KHz

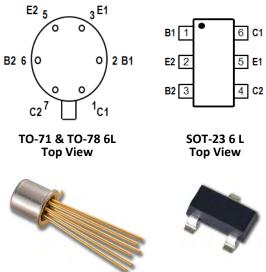
MATCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	IT130A	IT130	IT131	IT132		UNITS	CONDITIONS
VBE1-VBE2	Base Emitter Voltage Differential	1	2	3	5	MAX.	mV	I _C = -10 μA V _{CE} = -5V
Δ (V _{BE1} -V _{BE2}) / Δ T	Base Emitter Voltage Differential	3	5	10	20	MAX.	μV/°C	Ic = 10 μA Vcε = 5V
	Change with Temperature ⁴							$T = -55^{\circ}C$ to $+125^{\circ}C$
I _{B1} -I _{B2}	Base Current Differential	2.5	5	25	25	MAX.	nA	Ic = -10 μA V _{CE} = -5V

STANDARD PACKAGE DIMENSIONS:

NOTES:

- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired.
- 2. The reverse base-to-emitter voltage must never exceed 6.2 volts; the reverse base-to-emitter current must never exceed 10 µA.
- 3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate electrical polarity only.
- 4. Not a production test.

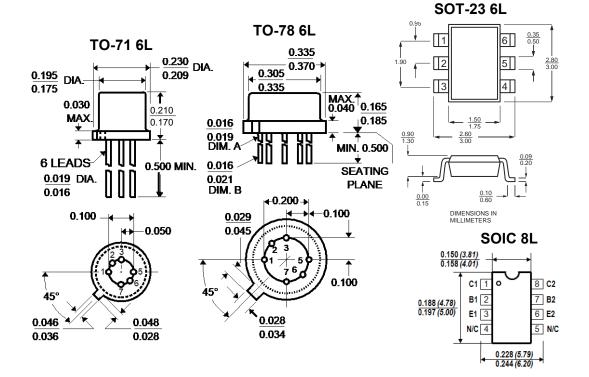

LS350, LS351 & LS352

Monolithic Dual PNP Transistors

Over 30 Years of Quality Through Innovation

GENERAL PURPOSE

FEATUR	FEATURES					
HIGH G	AIN	hfe 200 @ 10µA - 1mA				
TIGHT \	/BE MATCHING	IV _{BE1} -V _{BE2} I=	0.2mV TYP.			
HIGH f⊤		275 MHz TY	′P. @ 1mA			
	UTE MAXIMUM RATING (unless otherwise stated					
	Collector Current	10mA				
Maximu	m Temperatures					
Storage	Temperature	-55° to +15	0°C			
Operatir	ng Junction Temperature	+150°C				
Maximu	m Power Dissipation	ONE SIDE	BOTH SIDES			
Device [Dissipation @ Free Air	250mW	500mW			
Linear D	erating Factor	2.3mW/°C	4.3mW/°C			


ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

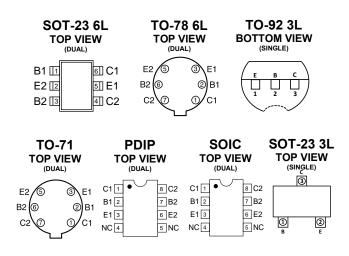
SYMBOL	CHARACTERISTIC	LS350	LS351	LS352		UNITS	CONDITIONS
ВVсво	Collector to Base Voltage	25	45	60	MIN.	V	I _C = 10μA I _E = 0
BVCEO	Collector to Emitter Voltage	25	45	60	MIN.	V	I _C = 1mA I _B = 0
BVEBO	Emitter to Base Voltage	6.0	6.0	6.0	MIN.	V	I _E = 10μA I _C = 0 <u>NOTE 2</u>
BV _{cco}	Collector to Collector Voltage	±25	±45	±80	MIN.	V	$I_{C} = \pm 1 \mu A$ $I_{E} = 0 = I_{B} = 0$
h _{FE}	DC Current Gain	100	150	200	MIN.		I _C = 10μA V _{CE} = 5V
			600	600	MAX.		
h _{FE}	DC Current Gain	100	150	200	MIN.		I _C = 100µA V _{CE} = 5V
			600	600	MAX.		
h _{FE}	DC Current Gain	100	150	200	MIN.		$I_{C} = 1 \text{mA}, \qquad V_{CE} = 5 \text{V}$
V _{CE} (SAT)	Collector Saturation Voltage	0.5	0.5	0.5	MAX.	V	I _C = 1mA I _B = 0.1mA
I _{CBO}	Collector Cutoff Current	0.2	0.2	0.2	MAX.	nA	I _E = 0 V _{CB} = <u>NOTE 3</u>
I _{EBO}	Emitter Cutoff Current	0.2	0.2	0.2	MAX.	nA	I _C = 0 V _{EB} = 3V
Сово	Output Capacitance	2	2	2	MAX.	pF	I _E = 0 V _{CB} = 5V
CC1C2	Collector to Collector Capacitance	2	2	2	MAX.	pF	V _{CC} = 0
Ic1c2	Collector to Collector Leakage Current	1.0	1.0	1.0	MAX.	μA	V _{CC} = <u>NOTE 4</u>
f⊤	Current Gain Bandwidth Product	200	200	200	MIN.	MHz	I _C = 1mA V _{CE} = 5V
NF	Narrow Band Noise Figure	3	3	3	MAX.	dB	I _C = 100μA V _{CE} = 5V
							BW = 200Hz R _G = 10K
							f = 1KHz

		LS350					
SYMBOL	CHARACTERISTIC	SOT-23	LS351	LS352		UNITS	CONDITIONS
IVBE1-VBE2I	Base Emitter Voltage Differential	1	0.4	0.2	TYP.	mV	I _C = 10 μA V _{CE} = 5V
		5	1.0	0.5	MAX.	mV	
I(V _{BE1} -V _{BE2})I/°C	Base Emitter Voltage Differential	2	1	0.5	TYP.	µV/°C	I _C = 10 μA V _{CE} = 5V
	Change with Temperature	20	10	2	MAX.	µV/°C	$T_{A} = -55^{\circ}C$ to $+125^{\circ}C$
II _{B1} - I _{B2} I	Base Current Differential		5	5	MAX.	nA	I _C = 10μA V _{CE} = 5V
I (I в1 - Iв2)I/°С	Base Current Differential		0.5	0.3	MAX.	nA/°C	$I_{C} = 10 \ \mu A$, $V_{CE} = 5V$
	Change with Temperature						$T_{A} = -55^{\circ}C$ to $+125^{\circ}C$
h _{FE1} /h _{FE2}	DC Current Gain Differential	10	5	5	TYP.	%	I _C = 10μA V _{CE} = 5V

STANDARD PACKAGE DIMENSIONS

NOTES:

- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired
- 2. The reverse base-to-emitter voltage must never exceed 6.0 volts; the reverse base-to-emitter current must never exceed 10 μA.
- 3. For LS350: V_{CB}=20V; for LS351 & LS352: V_{CB}=30V.
- 4. For LS351: Vcc=±45V; for LS352: Vcc=±80V; for LS350: Vcc=±25V.
- 5. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only.


Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Over Three Decades of Quality Through Innovation

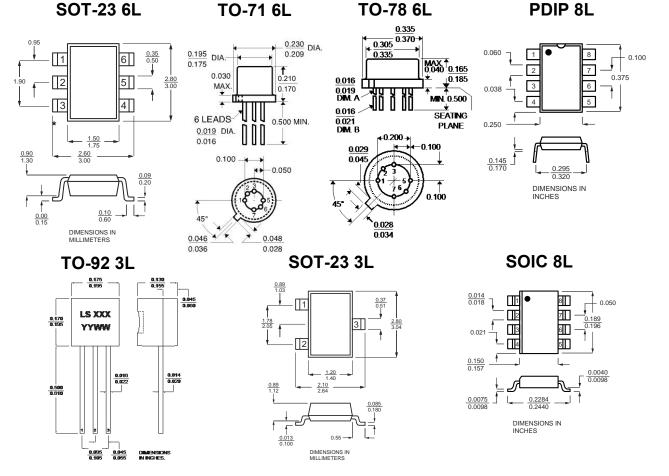
FEATURES						
6 LEAD SOT-23 SURFACE MOUNT PACKAGE*						
TIGHT MATCHING ¹	2mV					
EXCELLENT THERMAL TRACKING ¹	3µV/°C					
ABSOLUTE MAXIMUM RATINGS ²						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-55 to +150 °C					
Operating Junction Temperature	-55 to +150 °C					
Maximum Power Dissipation						
Continuous Power Dissipation	TBD					
Maximum Currents						
Collector Current 50mA						
Maximum Voltages						
Collector to Collector Voltage 60V						

LS3550 SERIES

MONOLITHIC DUAL & SINGLE PNP TRANSISTORS

MATCHING ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated) * MATCHING ELECTRICAL CHARACTERISTICS FOR DUALS ONLY

SYMBOL	CHARACTERISTIC	LS3	550A	A LS3550B		LS3550B		LS3550B LS35		UNIT	CONDITIONS
STWIDOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS		
VBE1-VBE2	Base to Emitter Voltage Differential		2		5		10	mV	I_{C} = -100µA, V_{CE} = -5V		
$\frac{\left V_{\text{BE1}}-V_{\text{BE2}}\right }{\Delta T}$	Base to Emitter Voltage Differential Change with Temperature		3		5		15	µV/°C	I_{C} = -100µA, V_{CE} = -5V T _A = -40°C to +85°C		
І в1— І в2	Base Current Differential		10		10		10	nA	I_{C} = -10µA, V_{CE} = -5V		
$\frac{\left I_{B1}-I_{B2}\right }{\Delta T}$	Base Current Differential Change with Temperature		0.5		0.5		1.0	nA/°C	I_{C} = -10µA, V_{CE} = -5V T_{A} = -40°C to +85°C		
hfe1/ hfe2	Current Gain Differential		10		10		15	%	Ic = -1mA, Vce = -5V		


ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

SYMBOL	IBOL CHARACTERISTIC LS35		550A	LS3	550B	50B LS3550C			CONDITIONS
STMBOL			MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
ВV _{сво}	Collector to Base Breakdown Voltage	-45		-40		-20		15	I _C = -10μΑ, I _E = 0Α
BVCEO	Collector to Emitter Breakdown Voltage	-45		-40		-20		16	I _C = -5mA, I _B = 0A
BV _{cco}	Collector to Collector Breakdown Voltage	±60		±60		±60			$I_{CC} = -\pm 1 \mu A$, $I_B = I_C = 0 A$
BV _{EBO}	Emitter to Base Breakdown Voltage ³	-6.0		-6.0		-6.0		V	I _E = -10μΑ, I _C = 0Α
V _{CE(SAT)}	Collector to Emitter Saturation Voltage		-0.50		-0.50		-1.2		I _C = -10mA I _B = -1mA

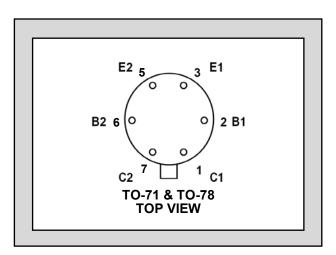
SYMBOL	CHARACTERISTIC	LS3550A LS3550B LS3550C		550C	UNIT	CONDITIONS			
STMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
		150		100		50			Ic = -1mA, V _{CE} = -5V
hfe	DC Current Gain	120		80		40			I_{C} = -10mA, V_{CE} = -5V
		100		60		30			Ic = -35mA, V _{CE} = -5V
1	Collector Cutoff Current		-0.35		-0.35				$I_E = 0A$, $V_{CB} = -30V$
I _{CBO}							-0.35	nA	I _E = 0A, V _{CB} = -20V
I _{EBO}	Emitter Cutoff Current		-0.35		-0.35		-0.35		$I_{E} = 0A, V_{CB} = -3V$
Ic1c2	Collector to Collector Leakage Current		±1		±1		±1	μA	V _{CC} = ±60V, I _B =I _C =0A
Сово	Output Capacitance		2		2		2	pF	I _E = 0A, V _{CB} = -10V
f⊤	Gain Bandwidth Product (Current)		600		600		600	MHz	I_{C} = -1mA, V_{CE} = -5V
NF	Noise Figure (Narrow Band)		3		3		3	dB	$I_{C} = -100 \mu A, V_{CE} = -5V$ BW = 200Hz R _B = 10 Ω , f = 1kHz

ELECTRICAL CHARACTERISTICS CONT. @25 °C (unless otherwise stated)

STANDARD PACKAGE DIMENSIONS:

NOTES:

- 1. Maximum rating for LS3550A, SOT-23-6L.
- 2. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 3. The reverse Base-to-Emitter voltage must never exceed -6.0 Volts. The reverse Base-to-Emitter current must never exceed -10µA.

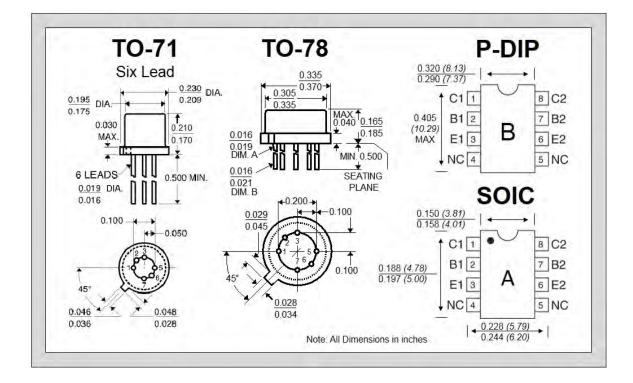

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Improved Standard Products[®]

FEATURES							
LOG CONFORMANCE $\Delta re \leq 1\Omega$ from ideal TYP.							
ABSOLUTE MAXIMUM RATINGS <u>NOTE 1</u> (T _A = 25°C unless otherwise noted)							
Ic Collector-Curren	t	-1	0mA				
Maximum Temperatures							
Storage Temperature Range		-65	5°C to +150°C				
Operating Junction Temperatur	e	-55	5°C to +150°C				
Maximum Power Dissipation ONE SIDE BOTH SIDES							
Device Dissipation T _A =25°C 250mW 500mW							
Linear Derating Factor	2.3m	W/°C	4.3mW/°C				

<u>LS358</u>

LOG CONFORMANCE MONOLITHIC DUAL PNP TRANSISTORS



ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

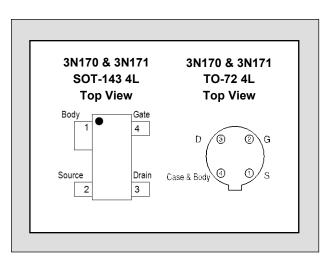
SYMBOL	CHARACTERISTIC	LS358		UNITS	CONDITIONS	
∆re	Log Conformance	1.5		Ω	Ic = -10-100-100	00µA V _{CE} = -5V
ВV _{сво}	Collector-Base Breakdown Voltage	-20	MIN.	V	Ic = -10μΑ	I _E = 0A
BV _{CEO}	Collector to Emitter Voltage	-20	MIN.	V	I _C = -1mA	I _B = 0A
BV _{EBO}	Emitter-Base Breakdown Voltage	-6.0	MIN.	V	I _E = -10μΑ	Ic = 0A <u>NOTE 2</u>
BVcco	Collector to Collector Voltage	45	MIN.	V	I _C = ±10µА, І _В =І _В	= = 0A
hfe	DC Current Gain	100	MIN.		Ic = -10μΑ	V _{CE} = -5V
		600	MAX.			
h _{FE}	DC Current Gain	100	MIN.		I _C = -100μΑ	V _{CE} = -5V
		600	MAX.			
hfe	DC Current Gain	100	MIN.		Ic = -1mA	V _{CE} = -5V
V _{CE} (SAT)	Collector Saturation Voltage	-0.5	MAX.	V	Ic = -1mA	I _B = -0.1mA
Ісво	Collector Cutoff Current	-0.2	MAX.	nA	I _E = 0A	V _{CB} = -15V
I _{EBO}	Emitter Cutoff Current	-0.2	MAX.	nA	I _C = 0A	V _{EB} = -3V
Сово	Output Capacitance ⁴	2.0	MAX.	pF	$I_E = 0A$	V _{CB} = -5V
C _{C1C2}	Collector to Collector Capacitance ⁴	2.0	MAX.	pF	V _{CC} = 0V	
IC1C2	Collector to Collector Leakage Current	±0.5	MAX.	μA	$V_{CC} = \pm 45V$	$I_B = I_E = 0A$
f⊤	Current Gain Bandwidth Product ⁴	200	MIN.	MHz	Ic = -1mA	V _{CE} = -5V
NF	Narrow Band Noise Figure ⁴	3.0	MAX.	dB	lc = -100μA BW = 200Hz f=1KHz	V _{CE} = -5V R _G = 10 KΩ

SYMBOL	CHARACTERISTIC	LS358		UNITS	CONDITIONS
VBE1-VBE2	Base Emitter Voltage Differential	0.4	TYP.	mV	I _C = -10 μA V _{CE} = -5V
		1	MAX.	mV	
$\Delta (V_{BE1}-V_{BE2}) /°C$	Base Emitter Voltage Differential ⁴	1	TYP.	µV/°C	I _C = -10 μA V _{CE} = -5V
	Change with Temperature				$T_{A} = -55^{\circ}C$ to $+125^{\circ}C$
I _{B1} -I _{B2}	Base Current Differential	5	MAX.	nA	I _C = -10 μA V _{CE} = -5V
Δ (I _{B1} -I _{B2}) / °C	Base Current Differential ⁴	0.5	TYP.	nA/°C	I _C = -10 μA V _{CE} = -5V
	Change with Temperature				$T_{A} = -55^{\circ}C$ to $+125^{\circ}C$
h _{FE1} /h _{FE2}	DC Current Gain Differential	5	TYP.	%	I _C = -10 μA V _{CE} = -5V

MATCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

NOTES:

- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired.
- 2. The reverse base-to-emitter voltage must never exceed 6.0 volts; the reverse base-to-emitter current must never exceed 10 µA.
- 3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate electrical polarity only.
- 4. Not tested; guaranteed by design.


Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Improved Standard Products[®]

FEATURES						
Direct Replacement for INTERSIL 3N170 & 3N171						
LOW DRAIN TO SOURCE RESISTANCE	$r_{ds(on)} \le 200\Omega$					
FAST SWITCHING	$t_{d(on)} \le 3.0$ ns					
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-65 to +150 °C					
Operating Junction Temperature	-55 to +135 °C					
Maximum Power Dissipation						
Continuous Power Dissipation	300mW					
Maximum Current						
Drain to Source	30mA					
Maximum Voltages						
Drain to Gate	±35V					
Drain to Source	25V					
Gate to Source	±35V					

<u>3N170 3N171</u>

N-CHANNEL MOSFET ENHANCEMENT MODE

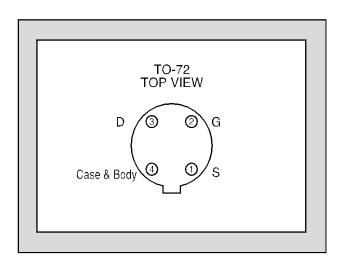
ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated) (V_{SB} = 0V unless otherwise stated)

SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNITS	CONDITIONS
BV _{DSS}	Drain to Source Breakdown	n Voltage	25				I _D = 10µA, V _{GS} = 0V
V _{DS(on)}	Drain to Source "On" Volta	ge			2.0	V	I _D = 10mA, V _{GS} = 10V
Veews	Gate to Source	3N170	1.0		2.0	v	V _{DS} = 10V, I _D = 10µA
$V_{GS(th)}$	Threshold Voltage	3N171	1.5		3.0		VDS - 10V, 10 - 10µA
lgss	Gate Leakage Current				10	pА	V _{GS} = -35V, V _{DS} = 0V
I _{DSS}	Drain Leakage Current "Of	f"			10	nA	V _{DS} = 10V, V _{GS} = 0V
I _{D(on)}	Drain Current "On"		10			mA	V _{GS} = 10V, V _{DS} = 10V
g _{fs}	Forward Transconductance	e	1000			μS	V _{DS} = 10V, I _D = 2.0mA, <i>f</i> = 1.0kHz
r _{ds(on)}	Drain to Source "On" Resis	stance			200	Ω	V _{GS} = 10V, I _D = 100µA, <i>f</i> = 1.0kHz
Crss	Reverse Transfer Capacita	ince			1.3		$V_{DS} = 0V, V_{GS} = 0V, f = 1.0MHz$
Ciss	Input Capacitance				5.0	pF	V _{DS} = 10V, V _{GS} = 0V, <i>f</i> = 1.0MHz
Cdb	Drain to Body Capacitance				5.0		V _{DB} = 10V, <i>f</i> = 1.0MHz

SWITCHING CHARACTERISTICS

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
t _{d(on)}	Turn On Delay Time			3.0		
tr	Turn On Rise Time			10	20	$V_{DD} = 10V, ID_{D(on)} = 10mA,$
$t_{d(off)}$	Turn Off Delay Time			3.0	ns	$V_{GS(on)} = 10V, V_{GS(off)} = 0V$ R _G = 50Ω
t _f	Turn Off Fall Time			15		-

1. Absolute maximum ratings are limiting values above which serviceability may be impaired.

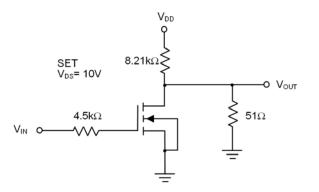

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

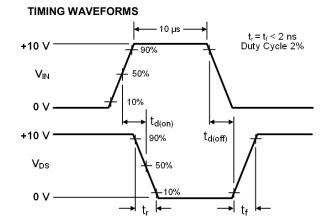
Improved Standard Products[®]

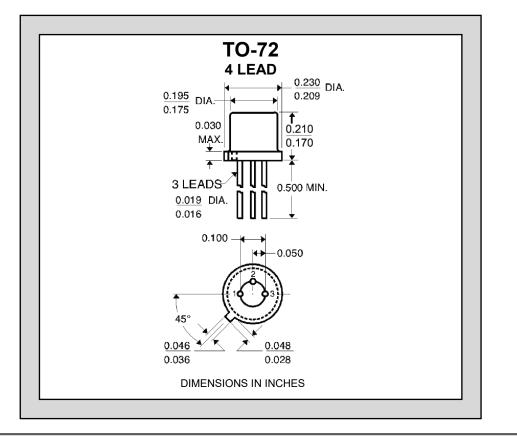
FEATURES	FEATURES					
DIRECT REPLACEMENT FOR INTERSIL 2N4351						
HIGH DRAIN CURRENT ID = 20mA						
HIGH GAIN	g _{fs} = 1000µS					
ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-55 to +150 °C					
Operating Junction Temperature -55 to +150 °						
Maximum Power Dissipation, T _A =25°C						
Continuous Power Dissipation ³	350mW					
Maximum Current						
Drain to Source	20mA					
Maximum Voltages						
Drain to Body	25V					
Drain to Source	25V					
Gate to Source	±30V					

<u>2N4351</u>

N-CHANNEL MOSFET ENHANCEMENT MODE




ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated) (V_{SB} = 0V unless otherwise stated)


SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{DSS}	Drain to Source Breakdown Voltage	25				I _D = 10µA, V _{GS} = 0V
V _{DS(on)}	Drain to Source "On" Voltage			1	V	I _D = 2mA, V _{GS} = 10V
V _{GS(th)}	Gate to Source Threshold Voltage	1		5		V _{DS} = 10V, I _D = 10µA
Igss	Gate Leakage Current			±10	pА	$V_{GS} = \pm 30V$, $V_{DS} = 0V$
I _{DSS}	Drain Leakage Current "Off"			10	nA	V_{DS} = 10V, V_{GS} = 0V
I _{D(on)}	Drain Current "On"	3			mA	V _{GS} = 10V, V _{DS} = 10V
g fs	Forward Transconductance	1000			μS	V_{DS} = 10V, I_{D} = 2mA, f = 1kHz
r _{ds(on)}	Drain to Source "On" Resistance			300	Ω	V _{GS} = 10V, I _D = 100uA, <i>f</i> = 1kHz
Crss	Reverse Transfer Capacitance ²			1.3		$V_{DS} = 0V, V_{GS} = 0V, f = 140 \text{kHz}$
Ciss	Input Capacitance ²			5.0	pF	$V_{DS} = 10V, V_{GS} = 0V, f = 140kHz$
C _{db}	Drain to Body Capacitance ²			5.0		$V_{DB} = 10V, f = 140kHz$

SYMBOL	CHARACTERISTIC	MAX	UNITS
t _{d(on)}	Turn On Delay Time ²	45	
tr	Turn On Rise Time ²	65	
t _{d(off)}	Turn Off Delay Time ²	60	ns
t _f	Turn Off Fall Time ²	100	

SWITCHING TEST CIRCUIT

NOTES:

1. Absolute maximum ratings are limiting values above which serviceability may be impaired.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

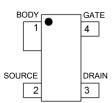
- 2. Not a production test. Guaranteed by design.
- 3. Derate 2.8 mW °C above 25 °C.


3N163 and 3N164

Over 30 Years of Quality Through Innovation

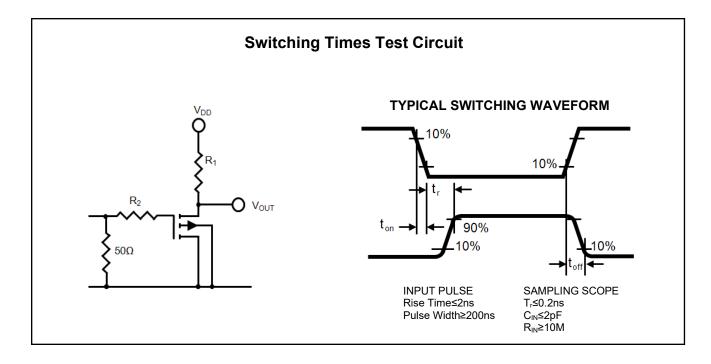
P-Channel Enhancement Mode MOSFET

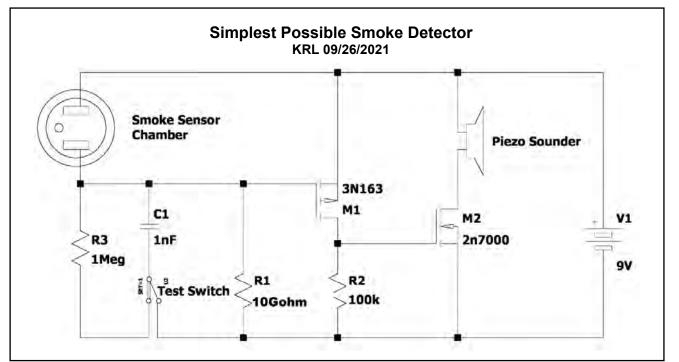
VERY HIGH INPUT IMPEDANCE, HIGH GATE BREAKDOWN, FAST SWITCHING, LOW CAPACITANCE


FEATURES	
VERY HIGH INPUT IMPEDANCE	
HIGH GATE BREAKDOWN	
ULTRA LOW LEAKAGE	
FAST SWITCHING	
LOW CAPACITANCE	
ABSOLUTE MAXIMUM RATINGS	
@ 25°C (unless otherwise stated)	
Drain-Source or Drain-Gate Voltage	
3N163	-40V
3N164	-30V
Drain Current	50mA
Storage Temperature	-55°C to +150°C
Power Dissipation TO-72 case	375mW ²
Power Dissipation SOT-143 case	350mW ³

TO-72 4L PACKAGE

РНОТО


ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)


SYMBOL	CHARACT	ERISTIC	3N′	163	3N	164	UNITS		CONDITIONS
			MIN	MAX	MIN	MAX			
Igss	Gate Leakage Curre	nt		-10		-10		V _{GS} =-40V,	V _{DS} =0 (3N163), V _{SB} =0V
		T _A =+125°C		-25		-25	pА	V _{GS} =-30V,	V _{DS} =0 (3N164), V _{SB} =0V
BV _{DSS}	Drain-Source Breakd	own Voltage	-40		-30			I _D =-10μΑ	V _{GS} =0, V _{BS} =0
BV _{SDS}	Source-Drain Breakd	own Voltage	-40		-30			Is=-10µA	V _{GD} =0, V _{BD} =0
V _{GS(th)}	Threshold Voltage		-2.0	-5.0	-2.0	-5.0	V	V _{DS} =V _{GS}	I _D =-10μΑ, V _{SB} =0V
V _{GS}	Gate Source Voltage	(on)	-3.0	-6.5	-3.0	-6.5		V _{DS} =-15V	I _D =-0.5mA, V _{SB} =0V
IDSS	Zero Gate Voltage, D	rain Current (off)		-200		-400	- 4	V _{DS} =-15V	V _{GS} =0, V _{SB} =0V
I _{SDS}	Zero Gate Voltage, S	Source Current		-400		-800	рА	V _{SD} =-15V	V _{GS} =0, V _{DB} =0V
R _{DS(on)}	Drain-Source on Res	istance		250		300	ohms	V _{GS} =-20V	I _D =-100μΑ, V _{SB} =0V
I _{D(on)}	On Drain Current		-5.0	-30	-3.0	-30	mA	V _{DS} =-15V	V _{GS} =-10V, V _{SB} =0V
g fs	Forward Transcondu	ctance	2.0	4.0	1.0	4.0	mS		L = 40ma A = f=4141=
g _{og}	Output Admittance			250		250	μS	V _{DS} =-15V	I _D =-10mA f=1kHz
Ciss	Input Capacitance-O	utput Shorted		3.5		3.5			
Crss	Reverse Transfer Ca	pacitance		0.7		0.7	pF	V _{DS} =-15V	I _D =-10mA ¹ f=1MHz
Coss	Output Capacitance	Input Shorted		3.0		3.0			

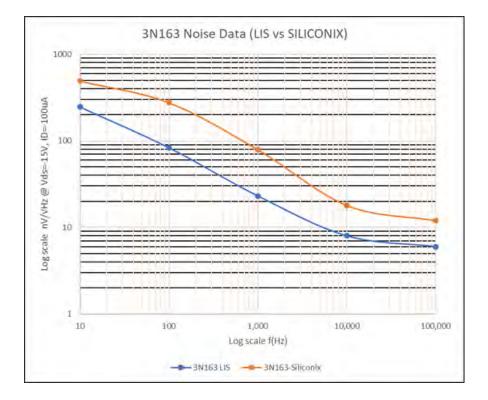
3N163 Series

SWITCHING CHARACTERISTICS T_A=25°C and V_{BS}=0 (unless otherwise noted)

SYMBOL	CHARACTERISTIC	3N163		3N164		UNITS	CONDITIONS	
		MIN	MAX	MIN	MAX			
t _{on}	Turn-On Delay Time		12		12		V _{DD} =-15V, V _{SB} =0V	
tr	Rise Time		24		24	ns	$I_{D(on)}$ =-10mA ¹ R _G =R _L =1.4K	
t _{off}	Turn-Off Time		50		50			

3N163 Series

NOTES:

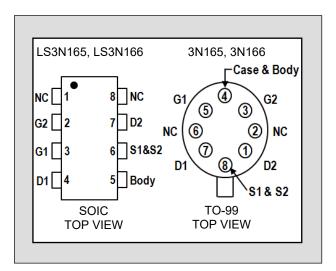

For design reference only, not 100% tested.
 Derate 3mW/°C above 25°C

3. Derate 3.5mW/°C above 25°C

4. All min/max limits are absolute numbers. Negative signs indicate electrical polarity only.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

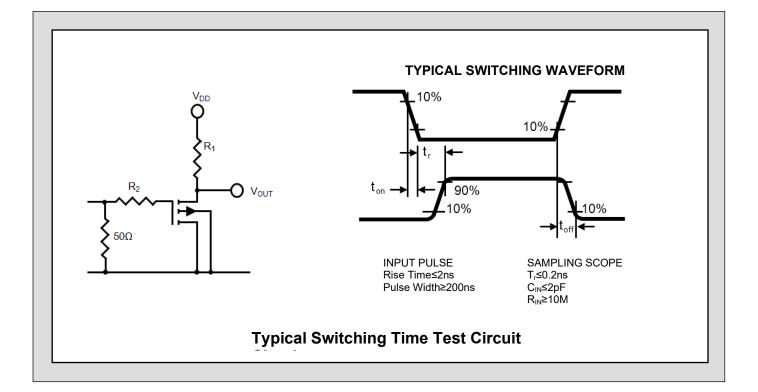


Improved Standard Products[®]

FEATURES	
VERY HIGH INPUT IMPEDANCE	
HIGH GATE BREAKDOWN	
ULTRA LOW LEAKAGE	
LOW CAPACITANCE	
ABSOLUTE MAXIMUM RATINGS (NOTE 1)	
(T _A =25°C unless otherwise noted)	
Drain-Source or Drain-Gate Voltage (NOTE 2)
3N165	40 V
3N166	30 V
Gate-Gate Voltage	±80 V
Drain Current (NOTE 2)	50 mA
Storage Temperature	-55°C to +150°C
Operating Temperature	-55°C to +150°C
Lead Temperature (Soldering, 10 sec.)	+300°C
Power Dissipation (One Side)	300 mW
Total Derating above 25°C	4.2 mW/ºC

3N/LS165, 3N/LS166

MONOLITHIC DUAL P-CHANNEL ENHANCEMENT MODE **MOSFET**



ELECTRICAL CHARACTERISTICS ($T_A=25^{\circ}C$ and $V_{BS}=0$ unless otherwise noted)

		3N165 & 3N166		LS3N165 & LS3N166					
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNITS		CONDITIC	ONS
Igssr	Gate Reverse Leakage Current		10		100		V _{GS} =40V		
Igssf	Gate Forward Leakage Current		-10		-100		V_{GS} =-40V		
			-25			pА	T _A =+125⁰C	;	
IDSS	Drain to Source Leakage Current		-200		-200		V _{DS} =-20 V,	V _{GS} =V _{BS} =0V	
I _{SDS}	Source to Drain Leakage Current		-400		-400		V _{SD} =-20 V,	V _{GD} =V _{DB} =0V	
I _{D(on)}	On Drain Current	-5	-30	-5	-30	mA	V _{DS} =-15V	V _{GS} =-10 V	V _{SB} =0V
V _{GS(th)}	Gate Source Threshold Voltage	-2	-5	-2	-5	V	V _{DS} =-15V	I⊳=-10µA	V _{SB} =0V
V _{GS(th)}	Gate Source Threshold Voltage	-2	-5	-2	-5	V	$V_{DS}=V_{GS}$	I _D =-10μΑ	V _{SB} =0V
r DS(on)	Drain Source ON Resistance		300		300	ohms	V_{GS} =-20V	I⊳=-100µA	V _{SB} =0V
g _{fs}	Forward Transconductance	1500	3000	1500	3000	μS	V _{DS} =-15V	I _D =-10mA	f=1kHz
gos	Output Admittance		300		300	μS		V _{SB} =0V	
Clss	Input Capacitance		3.0		3.0				
Crss	Reverse Transfer Capacitance		0.7		1.0	pF	V _{DS} =-15V	I⊳=-10mA	f=1MHz
Coss	Output Capacitance		3.0		3.0		(<u>NOTE 3</u>)	V _{SB} =0V	
$R_E(Y_{ls})$	Common Source Forward Transconductance	1200				μS	V _{DS} =-15V (<u>NOTE 3</u>)	I _D =-10mA V _{SB} =0V	f=100MHz

MATCHING CHARACTERISTICS 3N165

		LIMITS				
SYMBOL	CHARACTERISTIC	MIN.	MAX.	UNITS	CONDITIONS	
G _{fs1} /G _{fs2}	Forward Transconductance Ratio	0.90	1.0		V_{DS} =-15V I _D =-500 µA f=1kHz V _{SB} =0V	
V _{GS1-2}	Gate Source Threshold Voltage Differential		100	mV	V _{DS} =-15V I _D =-500 µA V _{SB} =0V	
$\Delta V_{GS1-2}/\Delta T$	Gate Source Threshold Voltage Differential		100	µV/⁰C	V _D s=-15V I _D =-500 μA V _{SB} =0V	
	Change with Temperature				T _A =-55°C to = +125°C	

NOTES:

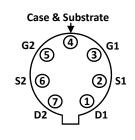
- 1. MOS field effect transistors have extremely high input resistance and can be damaged by the accumulation of excess static charge. To avoid possible damage to the device while wiring, testing, or in actual operation, follow these procedures: To avoid the build-up of static charge, the leads of the devices should remain shorted together with a metal ring except when being tested or used. Avoid unnecessary handling. Pick up devices by the case instead of the leads. Do not insert or remove devices from circuits with the power on, as transient voltages may cause permanent damage to the devices.
- 2. Per transistor.
- 3. For design reference only, not 100% tested.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

3N190/3N191

Over 30 Years of Quality Through Innovation

Dual P-Channel Enhancement Mode MOSFET


LOW TOTAL HARMONIC DISTORTION (THD) AND VOLTAGE NOISE MOSFET

FEATURES								
DIRECT REPLACEMENT FOR INTERSIL 3N190 & 3N191								
LOW GATE LEAKAGE CURRENT I _{GSS} ≤ ±10p.								
LOW TRANSFER CAPACITANCE	C _{rss} ≤ 1.0pF							
ABSOLUTE MAXIMUM RATINGS ¹								
@ 25 °C (unless otherwise stated)								
Maximum Temperatures								
Storage Temperature	-65 to +150 °C							
Operating Junction Temperature	-55 to +135 °C							
Maximum Power Dissipation @ TA=25°C								
Continuous Power Dissipation One Side	300mW							
Continuous Power Dissipation Both Sides	525mW							
Maximum Current								
Drain to Source ²	30mA							
Maximum Voltages	Maximum Voltages							
Drain to Gate ²	40V							
Drain to Source ²	40V							
Gate to Gate	±60V							

Package Photo TO-78 7L

Pin Configuration

Side View

Top View

Features

- Very High Input Impedance
- High Gate Breakdown
- Low Capacitance
- High Switching Frequency

Benefits

- Minimal Response Time.
- Generates less heat loss compared to BJT at high currents.
- Great at amplifying analog signals.Reduces design complexity in
- medium and low power applications.Ideal Choice for high-side switches.
- Simplified gate driving technique reduces overall cost.

Applications

- Switching Applications
- Amplifying Circuits
- Chopper Circuits
- High-Frequency Amplifier
- Voltage Regulator Circuits
- Inverter
- DC Brushless Motor Drives
- DC Relay
- Digital Circuits

Description

The 3N190/3N191 Series is a Dual, P-Channel, Enhancement Mode MOSFET. The MOSFET is a voltage controlled solid state device. The simplicity of the design is advantageous for nonisolated POL(Point of Load) power supplies and low-voltage drives applications, where space is limited. The simplified gate driving technique is often a beneficial characteristic for designers because it reduces overall cost. The 3N190/3N191 Series has a very high switching frequency so that they are used in highspeed load switching, given their minimal response time. The 3N190/3N191 can be used for digital control of higher current and higher voltage loads than the ratings that a microcontroller can withstand. They are great at amplifying analog signals, especially in audio applications. They have multiple functions in different types of applications and can also be used as a chopper or regulator. The 3N190 and 3N191 are the same products as a second source for Intersil products.

3N190 Series

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS			
g _{fs1} /g _{fs2}	Forward Transconductance Ratio	0.85	-	1.0	-	V _{DS} = -15V, I _D = -500μA, <i>f</i> = 1kHz			
V _{GS1-2}	Gate to Source Threshold Voltage Differential	-	-	100	mV	V _{DS} = -15V, I _D = -500µA			
$\frac{\Delta V_{GS1-2}}{\Delta T}$	Gate to Source Threshold Voltage Differential with Temperature ⁴	-	50	-	µV/°C	V _{DS} = -15V, I _D = -500μA T _S = -55 to +25 °C			
$\frac{\Delta V_{GS1-2}}{\Delta T}$	Gate to Source Threshold Voltage Differential with Temperature ⁴	-	50	-		V _{DS} = -15V, I _D = -500μA T _S = +25 to +125 °C			

MATCHING CHARACTERISTICS @ 25 °C (unless otherwise stated)

ELECTRICAL CHARACTERISTICS @ 25 °C

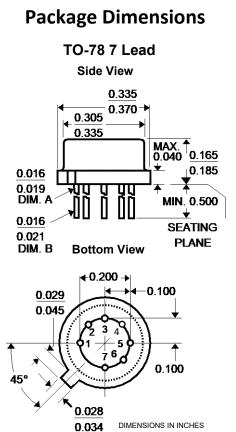
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{DSS}	Drain to Source Breakdown Voltage	-40	-	-		I _D = -10μΑ
BV _{SDS}	Source to Drain Breakdown Voltage	-40	-	-		I _S = -10μA, V _{BD} = 0V
Vgs	Gate to Source Voltage	-3.0	-	-6.5	V	V _{DS} = -15V, I _D = -500µA
V _{GS(th)}	Gate to Source Threshold Voltage	-2.0	-	-5.0		$V_{DS} = V_{GS}$, $I_D = -10 \mu A$
		-2.0	-	-5.0		V _{DS} = -15V, I _D = -500µA
Igssr	Reverse Gate Leakage Current	-	-	10		V _{GS} = 40V
I _{GSSF}	Forward Gate Leakage Current	-	-	-10	рА	V _{GS} = -40V
IDSS	Drain Leakage Current "Off"	-	-	-200		V _{DS} = -15V
Isds	Source to Drain Leakage Current "Off"	-	-	-400		V _{SD} = -15V, V _{DB} = 0V
I _{D(on)}	Drain Current ²	-5.0	-	-30.0	mA	V _{DS} = -15V, V _{GS} = -10V
I _{G1G2}	Gate to Gate Isolation Current	-	-	±1.0	μA	$V_{G1G2} = \pm 80V, I_D = I_S = 0 = mA$
g _{fs}	Forward Transconductance ⁴	1500	-	4000	μS	V _{DS} = -15V, I _D = -5mA, <i>f</i> = 1kHz
gos	Output Admittance	-	-	300		
r _{ds(on)}	Drain to Source "On" Resistance	-	-	300	Ω	V _{DS} = -20V, I _D = -100µA
Crss ³	Reverse Transfer Capacitance	-	-	1.0		
Ciss ³	Input Capacitance Output Shorted	-	-	4.5	pF	$V_{DS} = -15V, I_D = -5mA, f = 1MHz$
Coss ³	Output Capacitance Input Shorted	-	-	3.0		

3N190/191 P-CHANNEL ENHANCEMENT MODE MOSFET TO-78 7L Substrate (Case) Pin-4 Biasing Recommendation

In order to improve the overall product performance, we strongly recommend Substrate (Case) pin to be connected to highest VCC potential at Pin-4 with an optional $10K\Omega$ resistor. This ensures strong reverse biasing of junction isolation diode and resulting improvement in Total Harmonic Distortion (THD) and Voltage Noise (Vn) performances. This applied voltage must be maximum 38V which is 2.0V less than device BVDSS breakdown voltage of 40V-max.

SWITCHING CHARACTERISTICS

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
t _{d(on)} ³	Turn On Delay Time	-	-	15		V_{DD} = -15V, $I_{D(on)}$ = -5mA,
tr ³	Turn On Rise Time	-	-	30	ns	$B_G = B_I = 1.4 k\Omega$
t _{off} ³	Turn Off Time	-	-	50		$N_{G} = N_{L} = 1.7N_{2}$


3N190 Series

Notes

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Per Transistor.
- 3. For design reference only. Not 100% tested.
- 4. Measured at end points, T_A and T_B .

5. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Ordering Information

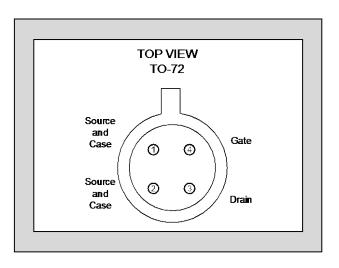
Standard Part Call-Out

3N190 TO-78 7L RoHS

3N191 TO-78 7L RoHS

Custom Part Call-Out (Custom Parts Include SEL + 4 Digit Numeric Code)

3N190 TO-78 7L RoHS SELXXXX

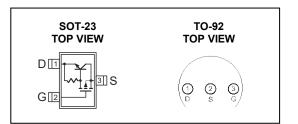

3N191 TO-78 7L RoHS SELXXXX

Over 30 Years of Quality Through Innovation

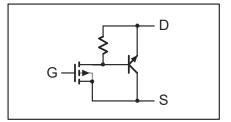
FEATURES							
HIGH INPUT IMPEDANCE	r _{Gs} = 100GΩ						
HIGH TRANSCONDUCTANCE	Y _{FS} = 30,000µS						
ABSOLUTE MAXIMUM RATINGS ¹							
@ 25 °C (unless otherwise stated)							
Maximum Temperatures							
Storage Temperature	-55 to +150 °C						
Operating Junction Temperature	-55 to +125 °C						
Maximum Power Dissipation							
Continuous Power Dissipation @ +25 °C	200mW						
Maximum Currents							
Drain Current	I _D = 25mA						
Maximum Voltages							
Drain to Source ¹	V _{DSO} = 20V						
Gate to Source	$V_{GSS} = 20V$						

LS320

HIGH INPUT IMPEDANCE BIFET AMPLIFIER



ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)


SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS				
VDS	Drain to Source Voltage	-20			V	I _{DS} = 100μA, V _{GS} = 0V				
Vgs	Gate to Source Voltage	-7	-10	-12	V	$I_{DS} = 10 \text{mA}, V_{DS} = -10 V^{2,3}$				
g fs	Common Source Forward Transconductance	30,000			μS	I _{DS} = 10mA, V _{DS} = -10V, <i>f</i> = 1kHz				
g _{oss}	Common Source Output Conductance		300		μS	I _{DS} = 10mA, V _{DS} = -10V, <i>f</i> = 1kHz				
r _{Gs}	Gate to Source Input Resistance	100			GΩ	V_{GS} = 0 to 20V, T_J to 125 °C				
Ciss	Input Capacitance		8		pF	I _{DS} = 10mA, V _{DS} = -10V				
C _{RSS}	Reverse Transfer Capacitance		1.5		pF	I _{DS} = 10mA, V _{DS} = -10V				
en	Noise Voltage		25		μV	I _{DS} = 10mA, V _{DS} = 10V BW = 50 to 15kHz				

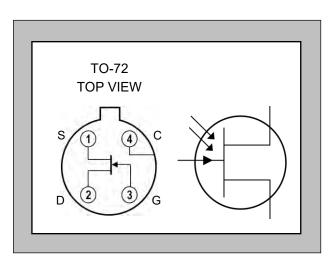
All limits are absolute numbers. Negative signs indicate electrical polarity.

PACKAGE OPTIONS

FUNCTIONAL

NOTES:

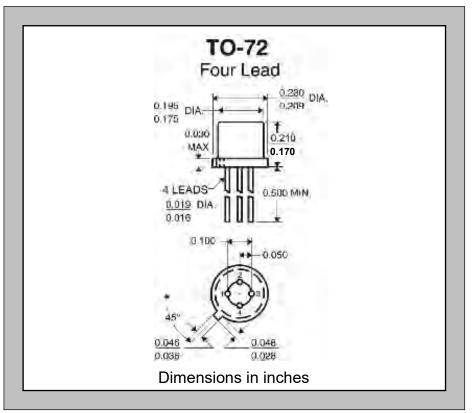
- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. The gate to source voltage must never exceed 100V, t < 10ms.
- 3. Additional screening available


Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Over 30 Years of Quality Through Innovation

FEATURES					
DIRECT REPLACEMENT FOR CRYSTALON	NICS FF627				
FLAT GLASS TOP FOR EXTERNAL OPTICS	8				
ULTRA HIGH SENSITIVITY					
ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-65 to +200 °C				
Operating Junction Temperature -55 to +165 °C					
Maximum Power Dissipation					
Continuous Power Dissipation, T _A =25°C 400mW					
Maximum Currents					
Drain to Source 50mA					
Maximum Voltages					
Drain to Gate	15V				
Drain to Source	15V				
Gate to Source	-10V				

<u>LS627</u>


PHOTO FET LIGHT SENSITIVE JFET

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
V _{GS(off)}	Gate to Source cutoff Voltage (VPO)	1.0		5.0	V	$V_{DS} = 10V, I_D = 0.1 \mu A$
SG	Gate Sensitivity ^{2, 7}	6.4		24	µA/mW/cm²	V_{DS} = 10V, V_{GS} = 0V, λ = 0.9µm
SD	Drain Sensitivity ^{3, 7}		500		mA/mW/cm ²	V_{DS} = 10V, V_{GS} = 0V, R_G = 1M Ω
λıg	Gate Current (Light) ^{4, 7}	10		37.5	nA/FC	V _{DS} = 10V, V _{GS} = 0V
λ _{ld}	Drain Current (Light) ^{4, 7}		800		µA/FC	V_{DS} = 10V, V_{GS} = 0V, R_G = 1M Ω
IDSS	Drain Saturation Current	8.0			mA	V _{DS} = 10V, V _{GS} = 0V
lgss	Gate Leakage Current (Dark)			30	pА	V _{GS} = -10V, V _{DS} = 0V
g fs	Forward Transconductance (g _m)	8000			μS	$V_{DS} = 10V, V_{GS} = 0V, f = 1kHz$
R _{DS(on)}	Drain to Source On Resistance		100		Ω	V _{DS} = 0.1V, V _{GS} = 0V
C _{GS}	Gate to Source Capacitance ⁷			35	ъĘ	V _{GS} = -10V, <i>f</i> = 140kHz
CGD	Gate to Drain Capacitance ⁷			20	pF	V_{GD} = -10V, <i>f</i> = 140kHz
tr	Rise Time ^{5, 7}		30		20	$V_{DS} = 10V, R_{L} = R_{G} = 100\Omega$
tf	Fall Time ^{6, 7}		50		ns	$v_{\rm DS} = 10 v, \kappa_{\rm L} = \kappa_{\rm G} = 100\Omega$

STANDARD PACKAGE DIMENSIONS:

NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Gate Current per unit Radient Power Density at Lens Surface
- 3. Drain Current per unit Radient Power Density (λ = 0.9µm).
- 4. Tungsten Lamp 2800°K Color Temperature.
- 5. GaAs Diode Source.
- 6. Directly Proportional to R_G.
- 7. Not production tested. Guaranteed by design.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Improved Standard Draduate®

NEAR SYSTEM

VCR11N

Improved Standard Products[®]

N-Channel JFET, Voltage Controlled Resistor

Simplify your Gain Control and Attenuation Designs Using Fewer Parts

ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated) Maximum Temperatures		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D [] J J J J G S [2]	8 7 6 5 D S • G
Storage Temperature	-65 to +150°C			1 2 3 4
Junction Operating Temperature	-55 to +135°C	TO-71 6L	SOT-23 6L	DFN 8L
Maximum Power Dissipation		Top View	Top View	Top View
Continuous Power Dissipation @ Ta= +25°C	300mW			
Maximum Currents				- Ann
Gate Forward Current	$I_{G(F)} = 10mA$			and a
Maximum Voltages			~	
Gate to Source	V _{GSS} = -25V			
Gate to Drain	$V_{GDS} = -25V$			

Benefits

•

•

•

• Wide Range Signal

Simplified Gate Drive

No Circuit Interaction

High Breakdown Voltage

Attenuation

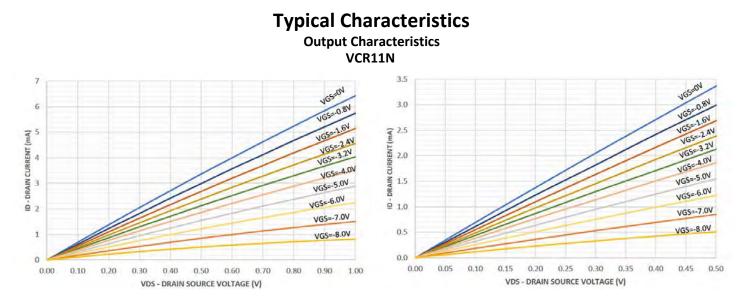
Gain Ranging

Features

- Continuous Voltage-Controlled Resistance
- High Off-Isolation
- High Input Impedance
- Gain Ranging Capability
- Simplified Drive Voltage Capabilities
- No Circuit Interaction
- Wide Range Signal Attenuation
- Pin-for-Pin Replacement for Siliconix VCR11N

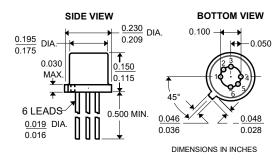
Description

A voltage-controlled resistor (VCR) is a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential applied to the third. The VCR is capable of operation as a symmetrical resistor with no dc bias voltage in the signal loop, an ideal characteristic for many applications. The VCR11N is specially intended for applications where the drain-source voltage is a low-level AC signal with no DC component. The key device performance is the predictable RDS change with no change in V_{GS} voltage. The VCR11N is available in the TO-71 6 lead package.


Electrical Characteristics @ Tj= 25°C (unless otherwise stated)

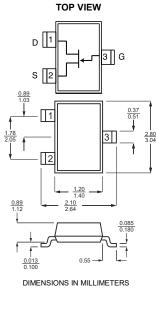
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-25			V	$I_{G} = -1\mu A$, $V_{DS} = 0V$
V _{GS(OFF)}	Gate to Source Pinch-off Voltage	-8		-12	V	I _D = 1µA, V _{DS} 10V
I _{GSS}	Gate to Source Leakage Current			-0.2	nA	V_{GS} = -15V, V_{DS} = 0V
		100		200	Ω	V _{GS} =0V, I _D =500µA
rDS(on)	Dynamic Drain to Source "ON" Resistance	100		200	Ω	V _{GS} =0V, I _D =1mA
	Static Drain to Source "ON" Resistance	0.95		1		V _{GS} =0V, I⊳=500µA
rDS1/rDS2	Ratios	0.95		1		V _{GS} =0V, I _D =1mA
C _{dgo}	Drain to Gate Capacitance			8	pF	V _{GD} =-10V, I _s =0A, <i>f</i> =1MHz
C _{dgo}	Source to Gate Capacitance			8	pF	V _{GS} =-10V, I _D =0A, <i>f</i> =1MHz

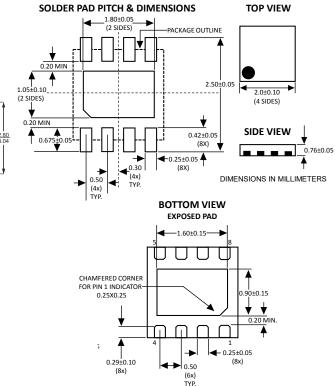
ApplicationsAmplifier Gain Control


- Oscillator Amplitude Control
- Small Signal Attenuations
- Filters

VCR11N

Standard Package Dimensions


TO-71 6 Lead


Ordering Information

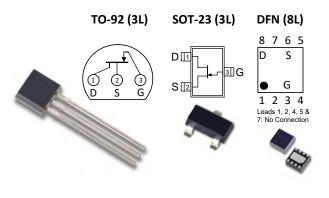
STANDARD PART CALL-OUT
VCR11N TO-71 6L RoHS
VCR11N SOT-23 6L RoHS
VCR11N DFN 8L RoHS
CUSTOM PART CALL-OUT
(CUSTOM PARTS INCLUDE SEL + 4 DIGIT NUMERIC CODE)
VCR11N TO-71 6L RoHS SELXXXX
VCR11N SOT-23 6L RoHS SELXXXX
VCR11N DFN 8L RoHS SELXXXX

SOT-23 6 Lead

DFN 8 Lead

Notes

- Absolute maximum ratings are limiting values above which serviceability may be impaired.
 Pulse Test: PW ≤ 300µs, Duty Cycle ≤ 3%
- 3. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only.
- When ordering include the full Linear Systems part number and package type. Linear Systems creates custom parts on a case by case basis. To learn whether Linear 4. Systems can meet your requirements, please send your drawing along with a detailed description of the device specifications to sales@linearsystems.com. One of our qualified representatives will contact you.
- 5. All standard parts are RoHS compliant. Contact the factory for availability of non-RoHS parts.
- 6. Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.



Improved Standard Products[®]

LS26VNS

N-Channel JFET, Voltage Controlled Resistor

ABSOLUTE MAXIMUM RATINGS ¹					
@ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-55 to +150°C				
Junction Operating Temperature	-55 to +135°C				
Maximum Power Dissipation					
Continuous Power Dissipation @ Ta= +25°C	350mW				
Maximum Currents					
Gate Forward Current	I _{G(F)} = 10mA				
Maximum Voltages					
Gate to Source	$V_{GSS} = -40V$				
Gate to Drain	V_{GDS} = -40V				

Features

- Continuous Voltage-Controlled Resistance
- High Off-Isolation
- High Input Impedance
- Gain Ranging Capability
- Simplified Drive Voltage Capabilities
- No Circuit Interaction
- Wide Range Signal Attenuation

Benefits

- Wide Range Signal Attenuation
- Gain Ranging
- Simplified Gate Drive
- High Breakdown Voltage
- No Circuit Interaction

Applications

- Variable Gain Amplifiers
- Automatic Gain Control
- Voltage Controlled Oscillator
- Small Signal Attenuations
- Filter Range Control

Description

The LS26VNS N-Channel Single JFET voltage controlled resistor has a drain-source resistance that is controlled by a DC bias voltage (VGs) applied to a high impedance gate terminal. Minimum RDS of 14 Ω occurs when VGs = -1.0V. As VGs approaches the pinch-off voltage of -6.0V RDS rapidly increases to the maximum value or RDS = 38 Ω .

The LS26VNS is specially intended for applications where the drain-source voltage is a low-level AC signal with no DC component. The key device performance is the predictable RDS change from14 to 38 Ω with no change in V_{GS} voltage. The LS26VNS is available in TO-92 (3 Lead), SOT-23 (3 Lead) and small foot-print DFN (8 Lead) packages.

Static Electrical Characteristics @ Tj= 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-40			V	$I_G = -1\mu A$, $V_{DS} = 0V$
V _{GS(OFF)}	Gate to Source Pinch-off Voltage	-1.0		-6.0	V	V _{DS} = 10V, I _D = 1µA
I _{GSS}	Gate to Source Leakage Current			-1.0	nA	$V_{GS} = -20V, V_{DS} = 0V$
V _{GS(F)}	Gate to Source Forward Voltage		0.7		V	$I_G = 1mA$, $I_D = 0A$
RDS(on)1	Drain to Source "ON" Resistance	14		38	Ohms	V _{DS} =0.5V, I _D =2.5mA
RDS(on)2	Drain to Source "ON" Resistance	14		38	Ohms	V _{DS} =0.5V, I _D =5.0mA
RDS1/RDS2	Static RDS(on) Ratio	0.90		1.0		

LS26VNS

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
RDS(on)ac	Drain to Source "ON" Resistance	14		38	Ohms	V _{DS} = 0.50V, I _D = 300 μA, <i>f</i> = 1kHz
CISS	Common Source Input Capacitance		13		pF	V _{DS} = 20V, V _{GS} = 0V, <i>f</i> = 1MHz
C _{RSS}	Common Source Reverse Transfer Cap.		3.6		pF	$V_{DS} = 0V, V_{GS} = -12V, f = 1MHz$

Dynamic Electrical Characteristics @ 25°C (unless otherwise stated)

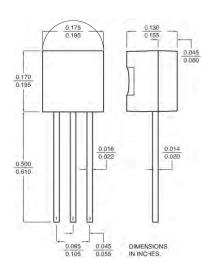
Notes

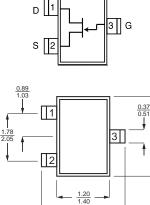
1. Absolute maximum ratings are limiting values above which serviceability may be impaired.

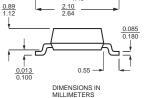
2. Pulse Test: PW \leq 300µs, Duty Cycle \leq 3%

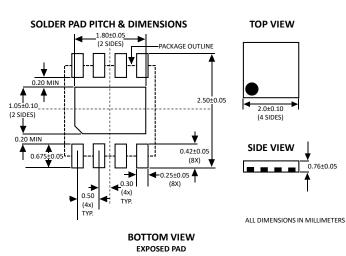
3. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only. Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed

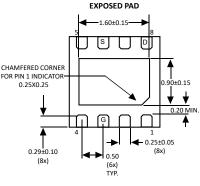
for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

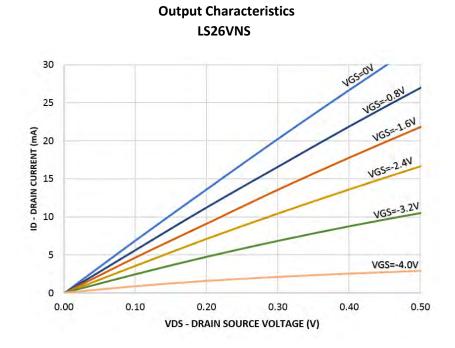

2.80


Package Dimensions


TO-92 3 Lead


SOT-23 3 Lead




DFN 8 Lead

Leads 1, 2, 4, 5 & 7: No Connection

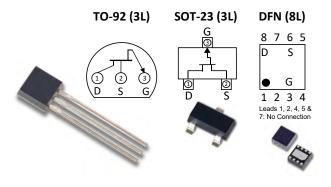
0.76+0.05

LS26VNS

Typical Characteristics

Ordering Information

STANDARD PART CALL-OUT
LS26VNS TO-92 3L RoHS
LS26VNS SOT-23 3L RoHS
LS26VNS DFN 8L RoHS
CUSTOM PART CALL-OUT
(CUSTOM PARTS INCLUDE SEL + 4 DIGIT NUMERIC CODE)
LS26VNS TO-92 3L RoHS SELXXXX
LS26VNS SOT-23 3L RoHS SELXXXX
LS26VNS DFN 8L RoHS SELXXXX



Improved Standard Products[®]

LS26VPS

P-Channel JFET, Voltage Controlled Resistor

ABSOLUTE MAXIMUM RATINGS ¹					
@ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-55 to +150°C				
Junction Operating Temperature	-55 to +135°C				
Maximum Power Dissipation					
Continuous Power Dissipation @ Ta= +25°C	350mW				
Maximum Currents					
Gate Forward Current	I _{G(F)} = 10mA				
Maximum Voltages					
Gate to Source	V_{GSS} = +40V				
Gate to Drain	V_{GDS} = +40V				

Features

- Continuous Voltage-Controlled Resistance
- High Off-Isolation
- High Input Impedance
- Gain Ranging Capability
- Simplified Drive Voltage Capabilities
- No Circuit Interaction
- Wide Range Signal Attenuation

Benefits

- Wide Range Signal Attenuation
- Gain Ranging
- Simplified Gate Drive
- High Breakdown Voltage
- No Circuit Interaction

Applications

- Variable Gain Amplifiers
- Automatic Gain Control
- Voltage Controlled Oscillator
- Small Signal Attenuations
- Filter Range Control

Description

The LS26VPS P-Channel Single JFET voltage-controlled resistor has a drain-source resistance that is controlled by a DC bias voltage (V_{GS}) applied to a high impedance gate terminal. Minimum RDS of 20 Ω occurs when V_{GS} = 3.0V. As V_{GS} approaches the pinch-off voltage of 7.5V, RDS rapidly increases to the maximum value or RDS = 50 Ω .

The LS26VPS is specially intended for applications where the drain-source voltage is a low-level AC signal with no DC component. The key device performance is the predictable RDS change from 20 to 50 Ω with no change in V_{GS} voltage. The LS26VPS is available in TO-92 (3 Lead), SOT-23 (3 Lead) and small foot-print DFN (8 Lead) packages.

Static Electrical Characteristics @ Tj= 25°C (unless otherwise stated)

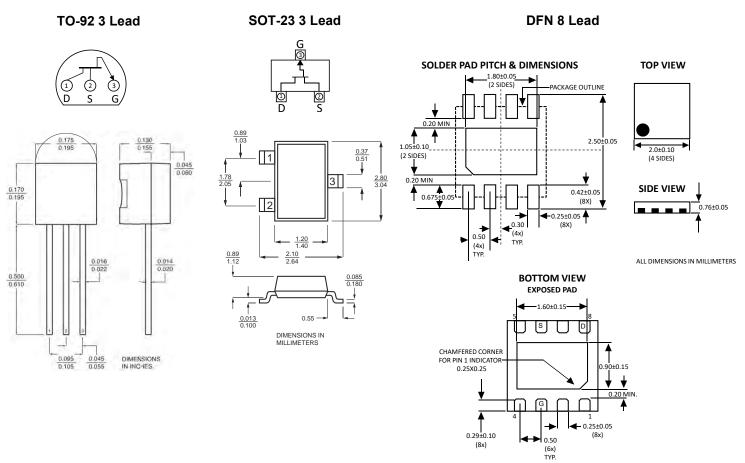
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV_{GSS}	Gate to Source Breakdown Voltage	+40			V	$I_G = +1\mu A$, $V_{DS} = 0V$
$V_{GS(OFF)}$	Gate to Source Pinch-off Voltage	3.0		7.5	V	$V_{DS} = -10V, I_D = -1\mu A$
I _{GSS}	Gate to Source Leakage Current			1.0	nA	V_{GS} = +20V, V_{DS} = 0V
V _{GS(F)}	Gate to Source Forward Voltage		0.7		V	$I_G = 1mA, I_D = 0A$
RDS(on)1	Drain to Source "ON" Resistance	20	35	50	Ohms	V _{DS} = -0.5V, I _D = -2.5mA
RDS(on)2	Drain to Source "ON" Resistance	20		50	Ohms	V _{DS} = -0.5V, I _D = -5.0mA
RDS1/RDS2	Static RDS(on) Ratio	0.90		1.0		

LS26VPS

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
RDS(on)ac	Drain to Source "ON" Resistance	20		50	Ohms	V _{DS} = -0.50V, I _D = -300 μA, <i>f</i> = 1kHz
CISS	Common Source Input Capacitance		13		pF	V _{DS} = -20V, V _{GS} = 0V, <i>f</i> = 1MHz
C _{RSS}	Common Source Reverse Transfer Cap.		3.6		pF	$V_{DS} = 0V, V_{DS} = +12V, f = 1MHz$

Dynamic Electrical Characteristics @ 25°C (unless otherwise stated)

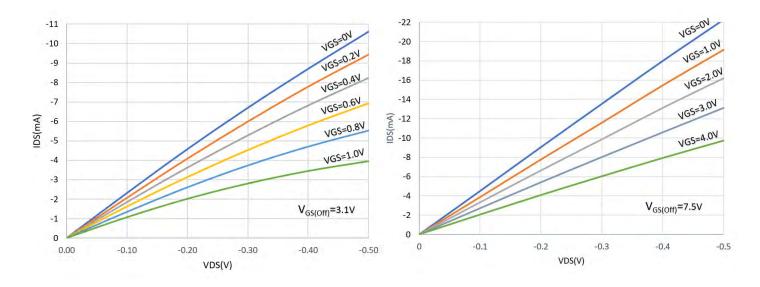
Notes


1. Absolute maximum ratings are limiting values above which serviceability may be impaired.

2. Pulse Test: PW ≤ 300µs, Duty Cycle ≤ 3%

3. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only.

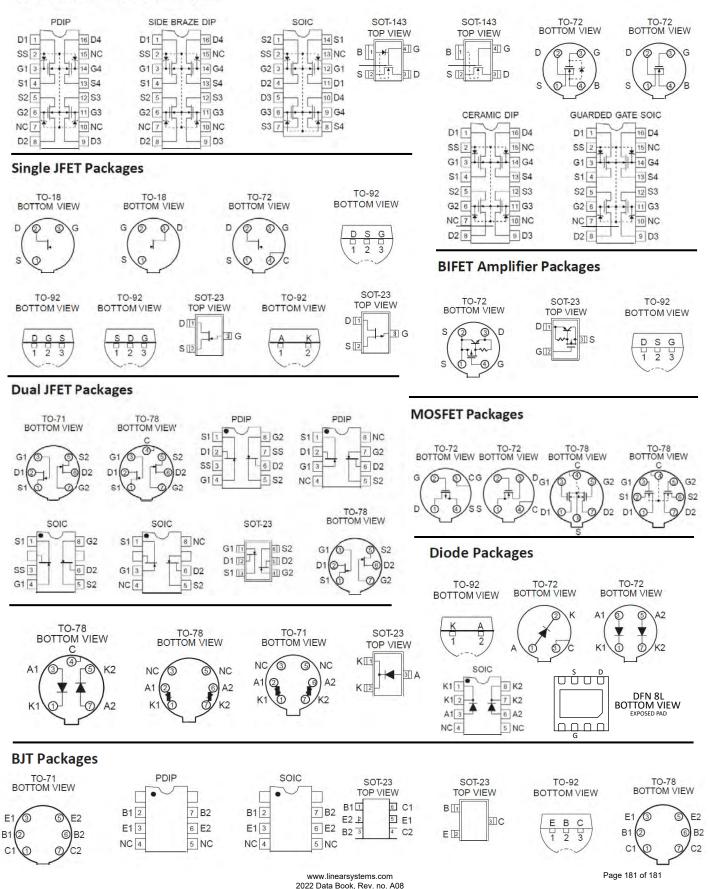
Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.


Package Dimensions

Leads 1, 2, 4, 5 & 7: No Connection

Typical Characteristics

Output Characteristics LS26VPS



Ordering Information

STANDARD PART CALL-OUT				
LS26VPS TO-92 3L RoHS				
LS26VPS SOT-23 3L RoHS				
LS26VPS DFN 8L RoHS				
CUSTOM PART CALL-OUT				
(CUSTOM PARTS INCLUDE SEL + 4 DIGIT NUMERIC CODE)				
LS26VPS TO-92 3L RoHS SELXXXX				
LS26VPS SOT-23 3L RoHS SELXXXX				
LS26VPS DFN 8L RoHS SELXXXX				

Package Options

Lateral DMOS Switch Packages

