

PRODUCT / PROCESS CHANGE NOTIFICATION PCN-000714 Date: APR-28-2021

P1/2

Se		Flynn Road, Camarillo CA 930	12		
	Cha	nge Details			
Part Number(s) Affecte	ed:	Customer Part Number(s)	Affected:	⊠ N/A	
GN3361-3EJ3AY2E GN3361-3EJ3AY3E					
Description, Purpose a	and Effect of Chang	e:			
GN3361 ROSA Data Sheet H	has been updated to refle	ct the following changes:			
	cteristics (VB _R & TB _R) – u I Flex Dimensions - upda				
		he actual size of the finished proc result and part of the product dev		e in the data	
Change Classification	☐ Major ☐ Minor Impact to Form, Fit, ☐ Yes ☐				
Change Classification		Function		No No	
Impact to Data Sheet Impact to Performance	Yes No	Function New Revision or Date	Rev. 1	⊠ N/A	
Impact to Data Sheet Impact to Performance	Yes No	Function New Revision or Date Reliability: reliability.	Rev. 1	<u> </u>	
Impact to Data Sheet Impact to Performance	Yes ☐ No e, Characteristics or	Function New Revision or Date Reliability: reliability. Work Week		<u> </u>	
Impact to Data Sheet Impact to Performance	Yes No	Function New Revision or Date Reliability: reliability.	Rev. 1	<u> </u>	
Impact to Data Sheet Impact to Performance No impact to performance Implementation Date Last Time Ship (LTS)	Yes No e, Characteristics or ce, characteristics or May-28-2021	Function New Revision or Date Reliability: reliability. Work Week Affecting Lot No. / Serial No. (SN) Qualification Report	Rev. 1	 1	
Impact to Data Sheet Impact to Performance No impact to performance Implementation Date Last Time Ship (LTS) Of unchanged product	Yes ☐ No e, Characteristics or ce, characteristics or May-28-2021 N/A Available Upon Reque	Function New Revision or Date Reliability: reliability. Work Week Affecting Lot No. / Serial No. (SN) st Qualification Report Availability	Rev. 1	∑ N/A	
Impact to Data Sheet Impact to Performance No impact to performance Implementation Date Last Time Ship (LTS) Of unchanged product Sample Availability Supporting Document	Yes ☐ No e, Characteristics or ce, characteristics or May-28-2021 N/A Available Upon Reque	Function New Revision or Date Reliability: reliability. Work Week Affecting Lot No. / Serial No. (SN) st Qualification Report Availability	Rev. 1	∑ N/A	
Impact to Data Sheet Impact to Performance No impact to performance Implementation Date Last Time Ship (LTS) Of unchanged product Sample Availability	Yes ☐ No e, Characteristics or ce, characteristics or May-28-2021 N/A Available Upon Reque	Function New Revision or Date Reliability: reliability. Work Week Affecting Lot No. / Serial No. (SN) st Qualification Report Availability	Rev. 1	⊠ N/A	
Impact to Data Sheet Impact to Performance No impact to performance Implementation Date Last Time Ship (LTS) Of unchanged product Sample Availability Supporting Document	Yes ☐ No e, Characteristics or ce, characteristics or May-28-2021 N/A Available Upon Reque	Function New Revision or Date Reliability: reliability. Work Week Affecting Lot No. / Serial No. (SN) st Qualification Report Availability	Rev. 1	⊠ N/A	
Impact to Data Sheet Impact to Performance No impact to performance Implementation Date Last Time Ship (LTS) Of unchanged product Sample Availability Supporting Document	Yes ☐ No e, Characteristics or ce, characteristics or May-28-2021 N/A Available Upon Reque	Function New Revision or Date Reliability: reliability. Work Week Affecting Lot No. / Serial No. (SN) st Qualification Report Availability	Rev. 1	⊠ N/A	
Impact to Data Sheet Impact to Performance No impact to performance Implementation Date Last Time Ship (LTS) Of unchanged product Sample Availability Supporting Document	Yes No Yes No Available Upon Reque	Function New Revision or Date Reliability: reliability. Work Week Affecting Lot No. / Serial No. (SN) st Qualification Report Availability	Rev. 1	⊠ N/A	
Impact to Data Sheet Impact to Performance No impact to performance Implementation Date Last Time Ship (LTS) Of unchanged product Sample Availability Supporting Document	Yes No Yes No Available Upon Reque	Function New Revision or Date Reliability: reliability. Work Week Affecting Lot No. / Serial No. (SN) st Qualification Report Availability	Rev. 1	∑ N/A	
Impact to Data Sheet Impact to Performance No impact to performance Implementation Date Last Time Ship (LTS) Of unchanged product Sample Availability Supporting Document	Yes No Yes No Available Upon Reque	Function New Revision or Date Reliability: reliability. Work Week Affecting Lot No. / Serial No. (SN) st Qualification Report Availability	Rev. 1	⊠ N/A	

PRODUCT / PROCESS CHANGE NOTIFICATION PCN-000714 Date: APR-28-2021

P2/2

	From	0 TD	、 、				0 TD	<u>,</u>	
	Il Characteristics (VB _R	& IB⊧	R)			I Characteristics (VB _R	& IBF	R)	
	lectrical Characteristics $t \pm 10\%$, $T_C = -40$ to $85^{\circ}C$					lectrical Characteristics ′±10%, T _C = -40 to 85℃			
Symbol	Parameter	Min	Тур	Max	Symbol	Parameter	Min	Тур	Ma
I _{CC}	Supply Current	44	50	69	Icc	Supply Current	44	50	69
Vout	Output Bias Voltage		V _{CC} - 0.3	1000	Vout	Output Bias Voltage	-	V _{CC} - 0.3	_
Rout _{diff}	Output Resistance (differential)	80	106	126	Rout _{diff}	Output Resistance (differential)	80	106	12
VOOFF	Differential Output Offset	-25	3 <u>—</u>	+25	V _{OOFF}	Differential Output Offset	-25	-	+2
V _{BR}	APD Break-down Voltage in dark at I _d =10µA	25	34	40	V _{BR}	APD Break-down Voltage in dark at I _d =10µA	26	34	45
T _{VBR}	Temperature Coefficient of APD V _{BR}	20	35	40	T _{VBR}	Temperature Coefficient of APD V_{BR}	15	25	35
	001 (7.50 +0.23) (optical Plane	Partie Alle	5.40.61			201105 100 mm 100 mm	600 001		
		<u> </u>	1.79 ±0.05	0.45 ±0.05		[0.45 ±0.05

Issuing Authority							
Semtech Business Unit:	Signal Integrity Product Group (SIP))					
Semtech Contact Info:	Pedro Jr. Bernas Quality Assurance pbernas@semtech.com (289) 856-9326 x1162	J J					
FOR FURTHER INFORMATION & WO	DRLDWIDE SALES COVERAGE: http://www.semtech	n.com/contact/index.html#support					

10/11.3Gb/s AGC APD ROSA – Long Wavelength 80km Receiver

Features

- Linear dynamic range designed for optimal OSNR performance
- Power dissipation 165mW typical
- Integral InGaAs avalanche photodiode
- Optical unstressed sensitivity (10⁻¹² BER) -26.5dBm mean typical
- Optical overload (10⁻¹² BER)
 -4dBm mean minimum
- Optical Return Loss < -27dB
- Optical wavelength range 1270nm to 1577nm
- Operates from 9.95Gb/s to 11.3Gb/s NRZ rates
- Upper OE bandwidth 7GHz typical
- Lower OE bandwidth 80kHz maximum
- AGC TIA with differential transimpedance, at sensitivity, of 8.5kΩ typical
- Receptacle is electrically isolated from TO46 can
- LC receptacle with flexible circuit
- Pb-free/Halogen-free/RoHS & WEEE compliant

Applications

- Long Haul WDM applications
- Meets requirements of OTU2, OTU2e, OTUFlex

Product Description

Semtech offers a portfolio of ROSAs for use in high performance optical data transmission applications. Semtech's GN3361 APD ROSA is a fully integrated device with design features that ensure excellent RF stability, together with high sensitivity.

The GN3361 offers excellent performance in low OSNR environments, coupled with low power consumption. Automatic Gain Control (AGC) is employed to maximize the dynamic range over which linearity is maintained. This enables state of the art sensitivity for both stressed and unstressed data. The GN3361 optical design is optimized for very low back-reflection.

Revision History

Version	ECO	Date	Changes
1	055157	January 2021	Converted Data Sheet to "Final" status. Updates to Table 2-1: Absolute Maximum Ratings, Table 2-2: Recommended Operating Conditions, Table 2-3: DC Electrical Characteristics and Figure 3-1: LC ROSA Barrel and Flex Dimensions.
0	050583	February 2020	New document.

Contents

1. Pin Out	3
1.1 Pin Assignment	3
1.2 Pin Descriptions	3
2. Electrical Characteristics	4
2.1 Absolute Maximum Ratings	4
2.2 Recommended Operating Conditions	4
2.3 DC Electrical Characteristics	5
2.4 AC Electrical Characteristics	6
3. Mechanical Details	7

1. Pin Out

1.1 Pin Assignment

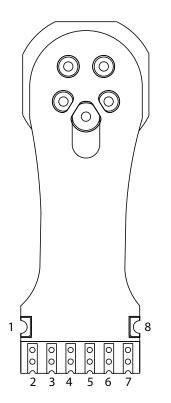


Figure 1-1: Type 1 Flex Pad Numbering (XMD PIN Style)

1.2 Pin Descriptions

Table 1-1: Pad Numbering for XMD PIN Flex

Pad Number	Name	Туре	Description
1	GND	Ground	Ground
2	VCC	Power Supply	+ TIA Voltage Supply
3	GND	Ground	RF ground
4	OUTP	RF Output	Positive output
5	OUTN	RF Output	Negative output
6	GND	Ground	RF ground
7	VAPD	APD Bias	+ APD Voltage Supply
8	GND	Ground	Ground

www.semtech.com

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below.

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	-0.5	4.0	V
V _{IO}	Voltage at either output	-0.5	V _{CC} +0.5	V
P _{OP}	Mean Optical Power (applied for 60 seconds)	+6.7	_	dBm
V _{ESD APD}	Electrostatic Discharge on APD (100pF, 1.5kΩ)	0.15	_	kV
V _{ESD}	Electrostatic Discharge on all pads except APD (100pF, 1.5kΩ)	2	_	kV
Tstg	Storage Temperature	-40	100	°C
V _{APD}	APD Bias	1	45	V

Table 2-1: Absolute Maximum Ratings

2.2 Recommended Operating Conditions

Table 2-2: Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Мах	Unit
V _{CC}	Supply Voltage	2.97	3.3	3.63	V
Т _С	ROSA Case Temperature	-40	_	85	°C
V _{APD}	APD bias at gain M=9	24	33	42	V

2.3 DC Electrical Characteristics

Table 2-3: DC Electrical Characteristics

Conditions: $V_{CC} = 3.3V \pm 10\%$, $T_C = -40$ to $85^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Unit	Note
I _{CC}	Supply Current	44	50	69	mA	1
Vout	Output Bias Voltage	_	V _{CC} - 0.3	_	V	2
Rout _{diff}	Output Resistance (differential)	80	106	126	Ω	_
V _{OOFF}	Differential Output Offset	-25	_	+25	mV	_
V _{BR}	APD Break-down Voltage in dark at I _d =10μA	26	34	45	V	_
T _{VBR}	Temperature Coefficient of APD V_{BR}	15	25	35	mV/°C	_
l _d	Dark Current at gain M=9	_	30	500	nA	_
R ₁₅₅₀ M=1	Responsivity (1550nm) at gain M=1 and P _{OP} =10μW	_	0.85	_	A/W	_
Rth	Nominal Thermistor Resistance at 25°C	9.7	10	10.3	kΩ	3
B _{25/85}	B Value calculated with thermistor resistances at 25°C and 85°C	3890	3970	4050	К	3

Notes:

1. Typical I_{CC} specified under dark conditions. Worst case I_{CC} specified under input overload conditions.

2. Value for FLEX circuit without filtering components. Typically V_{CC} -0.4V when filtering components fitted.

3. Only applicable to devices with thermistor fitted.

2.4 AC Electrical Characteristics

Table 2-4: AC Electrical Characteristics

Conditions: $V_{CC} = 3.3V \pm 10\%$, $T_C = -40$ to 85° C, $R_L = 100\Omega$ differential AC-coupled via 100nF for each output, M=7

Symbol	Parameter	Min	Тур	Мах	Unit	Note
Psens	Mean unstressed optical sensitivity at 10.709Gb/s data rate	_	-26.5	-25.5	dBm	1, 2
Povrld	Mean unstressed optical overload at 10.709Gb/s data rate	-4	-2	_	dBm	1, 3, 6
BW (3dB) M=7	OE Small Signal Upper Bandwidth at −3dB point	_	7	_	GHz	1
Dri	Input Data Rate	—	—	11.3	Gb/s	—
V _{OUT_AGCMAX}	Maximum differential output swing under AGC	270	320	370	mV _{ppd}	7
V _{OUT_MAX}	Maximum Differential Output Voltage at overload	_	530	_	mV _{ppd}	1
I _{AGC}	Onset of AGC	—	40	—	μΑ _{pp}	—
BW _I (3dB)	OE Small Signal Lower Bandwidth at −3dB point	20	40	80	kHz	1,4
td	OE Group Delay Ripple peak-to-peak (100MHz to 6GHz)	_	20	50	ps _{pp}	1,5
ORL 1550	Optical Return Loss (1550nm)		_	-27	dB	_
THD	Total Harmonic Distortion	_	2	5	%	_

Notes:

1. Typical values defined as typical process, T_C at 25°C and V_{CC} at 3.3V while minimum and maximum values are under worst or best case process, power supply and junction temperature for the parameter specified.

2. BER = 10⁻¹², input signal Extinction Ratio 10dB. The stated performance should be achievable dependent upon the RF environment in which the user packages the ROSA.

3. Measured with APD biased to give M=3 at -20dBm mean input power.

4. Maximum lower bandwidth is under the conditions maximum optical power. Lower bandwidth specified is represented by the device only, i.e. the AC-coupling of the output ports is not included.

5. Group Delay Ripple does not assume any transmission line delay as a result of connecting the output ports to external traces.

6. Input signal Extinction Ratio 10dB.

7. Defined at 1mA_{pp} input OMA.

3. Mechanical Details

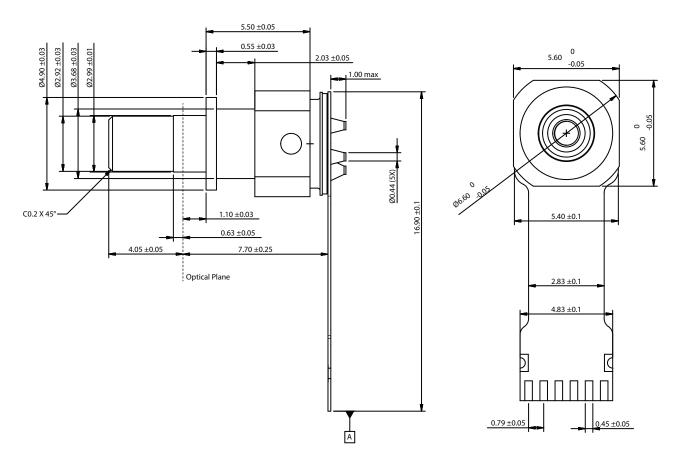


Figure 3-1: LC ROSA Barrel and Flex Dimensions

Ordering Information

Part Number

Device Package

GN3361-3EJ3AY2E3

LC with Flex

www.semtech.com

IMPORTANT NOTICE

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech's standard terms and conditions of sale.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.

© Semtech 2021

Contact Information

Semtech Corporation 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111, Fax: (805) 498-3804 www.semtech.com

GN3361 Final Data Sheet Rev.1 PDS-062273 January 2021 8 of 8 Semtech Proprietary & Confidential