PRODUCT / PROCESS CHANGE NOTIFICATION PCN-000714
 Date: APR-28-2021
 P1/2

Semtech Corporation, 200 Flynn Road, Camarillo CA 93012			
Change Details			
Part Number(s) Affected:$\begin{aligned} & \text { GN3361-3EJ3AY2E3 } \\ & \text { GN3361-3EJ3AY3E3 } \end{aligned}$		Customer Part Number(s) Affected: \boxtimes N/A	
Description, Purpose and Effect of Change: GN3361 ROSA Data Sheet has been updated to reflect the following changes: 1. DC Electrical Characteristics $\left(V_{R} \& B_{R}\right)-$ updated in Table 2-3 2. LC ROSA Barrel and Flex Dimensions - updated in Figure 3-1 The changes in dimensions are corrections to match the actual size of the finished product. The update in the data sheet is to align with the product characterization test result and part of the product development.			
Change Classification	\boxtimes Major $\quad \square$ Minor	Impact to Form, Fit, Function	\boxtimes Yes $\quad \square$ No
Impact to Data Sheet	\boxtimes Yes \square No	New Revision or Date	Rev. 1 ®N/A
Impact to Performance, Characteristics or Reliability: No impact to performance, characteristics or reliability.			
Implementation Date	May-28-2021	Work Week	21
Last Time Ship (LTS) Of unchanged product	N/A	Affecting Lot No. / Serial No. (SN)	N/A
Sample Availability	Available Upon Request	Qualification Report Availability	See following pages
Supporting Documents for Change Validation/Attachments: - PDS-062273 Rev. 1			

PRODUCT / PROCESS CHANGE NOTIFICATION
PCN-000714
Date: APR-28-2021 P$/ 2$

Issuing Authority	
Semtech Business Unit:	Signal Integrity Product Group (SIP)
Semtech Contact Info:	Pedro Jr. Bernas Quality Assurance pbernas@semtech.com (289) $856-9326 \times 1162$
FOR FURTHER INFORMATION \& WORLDWIDE SALES COVERAGE: http://www.semtech.com/contactindex.html\#support	

Features

- Linear dynamic range designed for optimal OSNR performance
- Power dissipation 165mW typical
- Integral InGaAs avalanche photodiode
- Optical unstressed sensitivity ($10^{-12} \mathrm{BER}$)
-26.5 dBm mean typical
- Optical overload ($10^{-12} \mathrm{BER}$)
-4 dBm mean minimum
- Optical Return Loss <-27dB
- Optical wavelength range 1270 nm to 1577 nm
- Operates from $9.95 \mathrm{~Gb} / \mathrm{s}$ to $11.3 \mathrm{~Gb} / \mathrm{s}$ NRZ rates
- Upper OE bandwidth 7GHz typical
- Lower OE bandwidth 80kHz maximum
- AGC TIA with differential transimpedance, at sensitivity, of $8.5 \mathrm{k} \Omega$ typical
- Receptacle is electrically isolated from TO46 can
- LC receptacle with flexible circuit
- Pb-free/Halogen-free/RoHS \& WEEE compliant

Applications

- Long Haul WDM applications
- Meets requirements of OTU2, OTU2e, OTUFlex

Product Description

Semtech offers a portfolio of ROSAs for use in high performance optical data transmission applications. Semtech's GN3361 APD ROSA is a fully integrated device with design features that ensure excellent RF stability, together with high sensitivity.

The GN3361 offers excellent performance in low OSNR environments, coupled with low power consumption. Automatic Gain Control (AGC) is employed to maximize the dynamic range over which linearity is maintained. This enables state of the art sensitivity for both stressed and unstressed data. The GN3361 optical design is optimized for very low back-reflection.

Revision History

Version	ECO	Date	Changes
1	055157	January 2021	Converted Data Sheet to "Final" status. Updates to Table 2-1: Absolute Maximum Ratings, Table 2-2: Recommended Operating Conditions, Table 2-3: DC Electrical Characteristics and Figure 3-1: LC ROSA Barrel and Flex Dimensions.
0	050583	February 2020	New document.

Contents

1. Pin Out 3
1.1 Pin Assignment 3
1.2 Pin Descriptions 3
2. Electrical Characteristics 4
2.1 Absolute Maximum Ratings 4
2.2 Recommended Operating Conditions 4
2.3 DC Electrical Characteristics 5
2.4 AC Electrical Characteristics 6
3. Mechanical Details 7

1. Pin Out

1.1 Pin Assignment

Figure 1-1: Type 1 Flex Pad Numbering (XMD PIN Style)

1.2 Pin Descriptions

Table 1-1: Pad Numbering for XMD PIN Flex

Pad Number	Name	Type	Description
1	GND	Ground	Ground
2	VCC	Power Supply	+ TIA Voltage Supply
3	GND	Ground	RF ground
4	OUTP	RF Output	Positive output
5	OUTN	RF Output	Negative output
6	GND	Ground	RF ground
7	VAPD	APD Bias	+ APD Voltage Supply
8	GND	Ground	Ground

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below.

Table 2-1: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
V_{CC}	Supply Voltage	-0.5	4.0	V
$\mathrm{~V}_{\mathrm{IO}}$	Voltage at either output	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
P_{OP}	Mean Optical Power (applied for 60 seconds)	+6.7	-	dBm
$\mathrm{V}_{\mathrm{ESD}}$ APD	Electrostatic Discharge on APD $(100 \mathrm{pF}, 1.5 \mathrm{k} \Omega)$	0.15	-	kV
$\mathrm{V}_{\mathrm{ESD}}$	Electrostatic Discharge on all pads except APD (100pF, 1.5k $\Omega)$	2	-	kV
Tstg	Storage Temperature	-40	100	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {APD }}$	APD Bias	1	45	V

2.2 Recommended Operating Conditions

Table 2-2: Recommended Operating Conditions

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply Voltage	2.97	3.3	3.63	V
$\mathrm{~T}_{\mathrm{C}}$	ROSA Case Temperature	-40	-	85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {APD }}$	APD bias at gain $\mathrm{M}=9$	24	33	42	V

2.3 DC Electrical Characteristics

Table 2-3: DC Electrical Characteristics

Conditions: $V_{C C}=3.3 \mathrm{~V} \pm 10 \%, T_{C}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Unit	Note
I_{CC}	Supply Current	44	50	69	mA	1
Vout	Output Bias Voltage	-	$\mathrm{V}_{\text {CC }}-0.3$	-	V	2
Rout $_{\text {diff }}$	Output Resistance (differential)	80	106	126	Ω	-
$\mathrm{V}_{\text {OOFF }}$	Differential Output Offset	-25	-	+25	mV	-
$V_{B R}$	APD Break-down Voltage in dark at $I_{d}=10 \mu \mathrm{~A}$	26	34	45	V	-
$\mathrm{T}_{\mathrm{VBR}}$	Temperature Coefficient of APD V BR	15	25	35	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	-
I_{d}	Dark Current at gain M=9	-	30	500	nA	-
$\mathrm{R}_{1550} \mathrm{M}=1$	Responsivity (1550 nm) at gain $\mathrm{M}=1$ and $\mathrm{P}_{\mathrm{OP}}=10 \mu \mathrm{~W}$	-	0.85	-	A/W	-
Rth	Nominal Thermistor Resistance at $25^{\circ} \mathrm{C}$	9.7	10	10.3	k Ω	3
$\mathrm{B}_{25 / 85}$	B Value calculated with thermistor resistances at $25^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$	3890	3970	4050	K	3

Notes:

1. Typical I_{CC} specified under dark conditions. Worst case I_{CC} specified under input overload conditions.
2. Value for FLEX circuit without filtering components. Typically $\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$ when filtering components fitted.
3. Only applicable to devices with thermistor fitted.

2.4 AC Electrical Characteristics

Table 2-4: AC Electrical Characteristics

Conditions: $V_{C C}=3.3 \mathrm{~V} \pm 10 \%, T_{C}=-40$ to $85^{\circ} \mathrm{C}, R_{L}=100 \Omega$ differential $A C$-coupled via 100 nF for each output, $M=7$

Symbol	Parameter	Min	Typ	Max	Unit	Note
Psens	Mean unstressed optical sensitivity at $10.709 \mathrm{~Gb} / \mathrm{s}$ data rate	-	-26.5	-25.5	dBm	1,2
Povrld	Mean unstressed optical overload at $10.709 \mathrm{~Gb} / \mathrm{s}$ data rate	-4	-2	-	dBm	1,3,6
BW (3dB) M=7	OE Small Signal Upper Bandwidth at -3 dB point	-	7	-	GHz	1
Dri	Input Data Rate	-	-	11.3	Gb / s	-
Vout_AGCmax	Maximum differential output swing under AGC	270	320	370	$m V_{\text {ppd }}$	7
V OUt_max	Maximum Differential Output Voltage at overload	-	530	-	mV ppd	1
$\mathrm{I}_{\text {AGC }}$	Onset of AGC	-	40	-	$\mu \mathrm{A}_{\mathrm{pp}}$	-
$B W_{1}(3 d B)$	OE Small Signal Lower Bandwidth at -3 dB point	20	40	80	kHz	1,4
td	OE Group Delay Ripple peak-to-peak (100 MHz to 6 GHz)	-	20	50	pspp	1,5
ORL ${ }_{1550}$	Optical Return Loss (1550nm)	-	-	-27	dB	-
THD	Total Harmonic Distortion	-	2	5	\%	-

Notes:

1. Typical values defined as typical process, T_{C} at $25^{\circ} \mathrm{C}$ and V_{CC} at 3.3 V while minimum and maximum values are under worst or best case process, power supply and junction temperature for the parameter specified.
2. $\mathrm{BER}=10^{-12}$, input signal Extinction Ratio 10 dB . The stated performance should be achievable dependent upon the RF environment in which the user packages the ROSA.
3. Measured with APD biased to give $M=3$ at -20 dBm mean input power.
4. Maximum lower bandwidth is under the conditions maximum optical power. Lower bandwidth specified is represented by the device only, i.e. the AC-coupling of the output ports is not included.
5. Group Delay Ripple does not assume any transmission line delay as a result of connecting the output ports to external traces.
6. Input signal Extinction Ratio 10 dB .
7. Defined at $1 m A_{p p}$ input OMA.

3. Mechanical Details

Figure 3-1: LC ROSA Barrel and Flex Dimensions

Ordering Information

Part Number	Device Package
GN3361-3EJ3AY2E3	LC with Flex

SEMTECH

IMPORTANT NOTICE

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech's standard terms and conditions of sale.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.
© Semtech 2021

Contact Information

Semtech Corporation

200 Flynn Road, Camarillo, CA 93012
Phone: (805) 498-2111, Fax: (805) 498-3804
www.semtech.com

